/***************************************************/ /* S A S S A M P L E L I B R A R Y */ /* */ /* TITLE: Documentation Examples for PROC LOGISTIC */ /* KEYS: logistic regression analysis, */ /* SAS/STAT User's Guide, PROC LOGISTIC chapter */ /* */ /***************************************************/ /*************************************************** Stepwise Logistic Regression and Predicted Values ****************************************************/ /* The data, taken from Lee (1974), consist of patient characteristics and whether or not cancer remission occurred. The variable REMISS is the cancer remission indicator variable with a value of 1 for remission and a value of 0 for nonremission. The other six variables are the risk factors thought to be related to cancer remission. The call to the LOGISTIC procedure illustrates the use of stepwise selection to identify the prognostic factors for cancer remission. Two output datasets are printed: one contains the parameter estimates and the estimated covariance matrix; the other contains the predicted values and confidence limits for the probabilities of cancer remission. */ options nodate nonumber nocenter ls=72; title1 'Example 1. Stepwise Regression'; Data remiss; input remiss cell smear infil li blast temp @@; label remiss = 'complete remission'; cards; 1 .8 .83 .66 1.9 1.1 .996 1 .9 .36 .32 1.4 .74 .992 0 .8 .88 .7 .8 .176 .982 0 1 .87 .87 .7 1.053 .986 1 .9 .75 .68 1.3 .519 .98 0 1 .65 .65 .6 .519 .982 1 .95 .97 .92 1 1.23 .992 0 .95 .87 .83 1.9 1.354 1.02 0 1 .45 .45 .8 .322 .999 0 .95 .36 .34 .5 0 1.038 0 .85 .39 .33 .7 .279 .988 0 .7 .76 .53 1.2 .146 .982 0 .8 .46 .37 .4 .38 1.006 0 .2 .39 .08 .8 .114 .99 0 1 .9 .9 1.1 1.037 .99 1 1 .84 .84 1.9 2.064 1.02 0 .65 .42 .27 .5 .114 1.014 0 1 .75 .75 1 1.322 1.004 0 .5 .44 .22 .6 .114 .99 1 1 .63 .63 1.1 1.072 .986 0 1 .33 .33 .4 .176 1.01 0 .9 .93 .84 .6 1.591 1.02 1 1 .58 .58 1 .531 1.002 0 .95 .32 .3 1.6 .886 .988 1 1 .6 .6 1.7 .964 .99 1 1 .69 .69 .9 .398 .986 0 1 .73 .73 .7 .398 .986 ; proc logistic data=remiss descending outest = betas; model remiss=cell smear infil li blast temp / selection = stepwise slentry = .3 slstay = .3 details; output out=pred p=phat lower=lcl upper=ucl predprob=(individual crossvalidate); proc print data = betas; title2 'Parameter Estimates'; options nodate nonumber nocenter ls=112; proc print data = pred; title2 'Predicted Probabilities, 95% Confidence Limits'; run;