M.S. Comprehensive Examination Topics
Dynamical Systems
2008
-
Differential Equations
Existence and uniqueness
Fixed point stability, linear analysis, hyperbolicity
Basic bifurcations: Saddle-Node, Transcritical, Pitchfork, Hopf, Homoclinic
Conjugacy, Hartman-Grobman Theorem
Conservative, Hamiltonian, Gradient, Reversible systems
Liapunov Functions
Limit sets, invariance, Limit cycles
Poincare-Bendixson, Dulac Criteria, Index Theory
Return Maps
-
Maps (1-D)
Fixed point stability, cobwebbing, hyperbolicity
Periodic orbits, linear stability, eventual periodicity
Logistic and Tent Maps
Conjugacy
Itineraries, Transition graphs, Liapunov exponents
Sharkovskii Theorem
Shift maps
-
Maps (2-D)
Linear Maps
Fixed point stability, linear analysis, hyperbolicity
Periodic orbits, Rotations
References:
Nonlinear Dynamics and Chaos, Steven H. Strogatz,
Westview.
Chaos: An Introduction to Dynamical Systems, Kathleen T. Alligood,
Tim D. Sauer and James A. Yorke,
Springer.
Dynamics and Bifurcations, Jack K. Hale and Hüseyin Kocak,
Springer.
©Pernarowski