Project Overview

Intro to Bayesian statistics has a course project worth 30% of the final grade. The project will be completed individually on a dataset of the student’s choosing. The project should follow the five steps of a Bayesian analysis fro DBDA:

1. Identify the data relevant to the research question(s).
2. Define a descriptive model for the relevant data.
3. Specify a prior distribution on the parameters.
4. Use Bayesian inference to re-allocate probability across parameter values.
5. Check that the posterior predictions mimic the data with reasonable accuracy.

Furthermore, while this class is a Bayesian statistics course, it is also a course on statistical modeling in general. When conducting analyses remember the following QQQ framework:

• **Qualitative**: Define and describe the research question without using statistical lingo in the language of the specified domain. In a collaborative setting, this step is typically done with a collaborator with expertise in a scientific area.

• **Quantitative**: Perform the analysis - 5 steps listed above.

• **Qualitative**: Translate the statistical results (posterior in this case) and make inferences in the language of the specified domain.

All written documents will be completed through R Markdown to enable reproducibility.

Evaluation

A full rubric will be provided later, but the evaluation will be based on:

- Project Proposal: 10%
- Intermediate Project Summary: 10%
- Oral Project Presentation: 30%
- Written Project Description: 40%
- Peer Feedback: 10%

Checkpoints

- March 8: Project Proposal Due
- March 22: Project Proposal Approved
- April 12: Intermediate Project Summary Due
- April 30: Project Due
 - ~6 minute oral description during scheduled final exam period
 - written report with reproducible code due

Project Proposal

The project proposal will contain three parts:

1. A written description of the research question.
2. A description of the dataset you propose using for the project (along with a link).
3. A few paragraphs describing the statistical model you will use to answer your research question.
Intermediate Project Summary

The intermediate project summary will build upon the project proposal and have the following sections:

1. An introductory section that describes your study and why it is important.
2. A description of the dataset you propose using for the project along with a few exploratory graphics about the dataset.
3. A detailed section describing the statistical model you will be using, along with clearly defined notation.
4. A section describing the priors you have selected for the parameters in your model and a clear justification of why they are appropriate.

Written Project Description

The written project will be the final report that continues to build upon the intermediate project summary. The report should have the following sections (or similar):

1. Introduction
2. Data
3. Statistical Model
4. Priors
5. Computation - include enough written details to describe how you are fitting models, but include all code in the appendix
6. Results - Discuss convergence of your MCMC, and results of the statistical models
7. Discussion - this is the last qualitative section, translate statistical results to context of the problem.

Oral Project Presentation

The oral projects will be during the scheduled final exam period on April 30th from 2:00 - 3:50 PM. Each student will have approximately 6 minutes to describe their work. Note: this will not be enough time to discuss the project in great detail, but should give classmates a sense of what was done with the project and what the findings were.

Peer Feedback

Throughout the course of the project you will be asked to evaluate classmates writing and presentations. Thoughtful, and respectful, comments will be expected as part of this component.