
STAT 436 / 536 - Lecture 10
October 5, 2018

Regression with Seasonality

• We have seen the presence of seasonality in several of the datasets we have considered. This section
focuses on regression techniques for seasonality.

Indicator variables for seasonality

• One approach for seasonality

• Assume we are looking at monthly data (e.g. airline passengers),

• Write out a linear model for seasonality with no trend.

xt = st + zt

• This model can be fit in R (for the airline passengers) using the following commands
data("AirPassengers")
AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),

count = as.numeric(AirPassengers))
lm(count ~ season - 1, data = AirPassengers.df)

##
## Call:
## lm(formula = count ~ season - 1, data = AirPassengers.df)
##
## Coefficients:
## season1 season2 season3 season4 season5 season6 season7
## 241.8 235.0 270.2 267.1 271.8 311.7 351.3
## season8 season9 season10 season11 season12
## 351.1 302.4 266.6 232.8 261.8
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- Now consider the same framework with a trend too

- We can formulate this in an additive framework as

- This model can be fit in R (for the airline passengers) using the following commands
data("AirPassengers")
AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),

count = as.numeric(AirPassengers), time = 1:length(AirPassengers))
lm(count ~ time + season - 1, data = AirPassengers.df)

##
## Call:
## lm(formula = count ~ time + season - 1, data = AirPassengers.df)
##
## Coefficients:
## time season1 season2 season3 season4 season5 season6
## 2.66 63.51 54.10 86.60 80.86 82.95 120.12
## season7 season8 season9 season10 season11 season12
## 157.13 154.22 102.89 64.40 27.99 54.33

• Or

• We will discuss fitting this model shortly, but note that it can be acheived with a log transform.
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Harmonic seasonal models

• The indicator variables cause a stair-step like seasonal pattern where each season has a step function or
a separate intercept. An alternative for a smooth seasonal pattern is to use sine and cosine functions.

• A sine wave with frequency f , phase shift φ, and amplitude A can be written as

A sin(2πft+ φ)

A <- 3
f <- 4
phi <- 1
t <- seq(0,2, by=.01)
f.t <- A * sin(2 * pi * f * t + phi )
plot(t, f.t, type='l')
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- The representation above is not linear, as φ is in the sine function; however, this can be re-expressed as

A sin(2πft+ φ)

where αs = A cos(φ) and αc = A sin(φ). This representation is linear in the parameters αs and αc and
standard techniques (OLS) can be used to estimate these parameters.

- Using this framework for harmonics with a time series {xt} with s seasons results in [s/2] possible cycles,
where [ ] retains the integer.

- This model can be written as

xt = mt +
[s/2]∑
i=1

(si sin(2πit/s) + ci cos(2πit/s)) + zt

where

3



- For instance consider the two curves below

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

t

2 4 6 8 10 12
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

t

- The first curve is defined by xt = sin(2πt/12).

- The second curve has harmonic terms with frequencies at 1
12 ,

2
12 and 4

12 and can be written as:

- Revisiting the equation above, this would equate to:

-s1 =

-c1 =

-s2 =

-c2 =

-s3 =

-c3 =

-s4 =

-c4 =

- Create a figure that contains the four separate harmonic curves (par(mfcol=c(4,1)) is one way to do this)
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• Now we are going to build on the model from above such that

xt = .05 ∗ t
+ sin(2π(t)/12)
+ 0.2 sin(2π(2t)/12)
+ 0.1 sin(2π(4t)/12)
+ 0.1 cos(2π(4t)/12)
+ wt

where wt ∼ N(µ = 0, σ2 = 12). Simulate a time series from this model with a total fo 240 time points.
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• The final step is to fit a time series model. Our goal here is learn the values for si and ci. To do so, we
need to construct the sine and cosine components. These serve the same purpose as covariates typically
denoted as X in a simple regression model.

SIN <- COS <- matrix(nrow = length(t), ncol=4) # restricting to 4 components
for (i in 1:4){

COS[,i] <- cos(2 * pi * i * t / 12)
SIN[,i] <- sin(2 * pi * i * t / 12)

}

lm.harm <- lm(x ~ t + COS + SIN)
summary(lm.harm)

##
## Call:
## lm(formula = x ~ t + COS + SIN)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.80990 -0.72876 0.07232 0.71650 2.16092
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0808591 0.1312197 -0.616 0.538
## t 0.1004270 0.0009443 106.349 <2e-16 ***
## COS1 0.1277193 0.0924207 1.382 0.168
## COS2 -0.1225709 0.0924207 -1.326 0.186
## COS3 0.0302556 0.0924207 0.327 0.744
## COS4 0.0092122 0.0924207 0.100 0.921
## SIN1 1.0934354 0.0924830 11.823 <2e-16 ***
## SIN2 0.1371539 0.0924303 1.484 0.139
## SIN3 -0.0011151 0.0924207 -0.012 0.990
## SIN4 0.0915840 0.0924175 0.991 0.323
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.012 on 230 degrees of freedom
## Multiple R-squared: 0.9802, Adjusted R-squared: 0.9794
## F-statistic: 1265 on 9 and 230 DF, p-value: < 2.2e-16
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