STAT 436 / 536 - Lecture 10: Key

October 5, 2018

Regression with Seasonality

e We have seen the presence of seasonality in several of the datasets we have considered. This section
focuses on regression techniques for seasonality.

Indicator variables for seasonality

e One approach for seasonality is to fit indicator indicator models for the seasonal components.

o Assume we are looking at monthly data (e.g. airline passengers), then we will need to include 12
indicator variables to account for each month.

e Write out a linear model for seasonality with no trend.
Ty = St + 2¢

where s, = 3; when t falls in the i*" month and z is the residual error. Otherwise this model can be
written as:

b1+ 2

B + 2

Ty =

Bi2 + 2

o This model can be fit in R (for the airline passengers) using the following commands

data("AirPassengers")

AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),
count = as.numeric(AirPassengers))

Im(count ~ season - 1, data = AirPassengers.df)

##

## Call:

## lm(formula = count ~ season - 1, data = AirPassengers.df)

##

## Coefficients:

## seasonl season?2 season3 season4 seasonb seasonb season?

## 241.8 235.0 270.2 267.1 271.8 311.7 351.3
## season8 season9 seasonl0 seasonll seasonl?2
## 351.1 302.4 266.6 232.8 261.8



- Now consider the same framework with a trend too

- We can formulate this in an additive framework as
Ty = My¢ + St + 2¢

where my = at and s; = B; when t falls in the i month and z is the residual error. Otherwise this model
can be written as:
at + B+ 2z

ot + o + 2
Ty = .

at + Bi2 + 2

- This model can be fit in R (for the airline passengers) using the following commands

data("AirPassengers")

AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),
count = as.numeric(AirPassengers), time = 1:length(AirPassengers))

Im(count ~ time + season - 1, data = AirPassengers.df)

##

## Call:

## 1lm(formula = count ~ time + season - 1, data = AirPassengers.df)

##

## Coefficients:

## time seasonl season?2 season3 season4 seasonb season6
## 2.66 63.51 54.10 86.60 80.86 82.95 120.12
## season7 season8 season9 seasonl0 seasonll seasonl?2

## 157.13 154.22 102.89 64.40 27.99 54.33

e Or We can formulate this in an multiplicative framework as
Ty = My X S X 2

where m; = at and s, = f; when t falls in the i month and z is the residual error. Otherwise this
model can be written as:
at X By + z
at X Bo + 24
Ty = 5.

at X Bro + z¢

o We will discuss fitting this model shortly, but note that it can be acheived with a log transform.



Harmonic seasonal models

e The indicator variables cause a stair-step like seasonal pattern where each season has a step function or
a separate intercept. An alternative for a smooth seasonal pattern is to use sine and cosine functions.

o A sine wave with frequency f, phase shift ¢, and amplitude A can be written as

Asin(2r ft + @)

A <- 3
f <-4
phi <- 1
t <- seq(0,2, by=.01)
f.t <~ A % sin(2 *x pi * £ x t + phi )
plot(t, f.t, type='1")
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- The representation above is not linear, as ¢ is in the sine function; however, this can be reexpressed as
Asin(2w ft + ¢) = s sin(27 ft) + . cos(27 ft),

where as = Acos(¢) and a, = Asin(¢). This representation is linear in the parameters a; and o, and
standard techniques (OLS) can be used to estimate these parameters.

- Using this framework for harmonics with a time series {z;} with s seasons results in [s/2] possible cycles,
where [] retains the integer.

- This model can be written as

[s/2]
Ty =my + Z (s;sin(2mit/s) 4 ¢; cos(2mwit/s)) + z¢
i=1

where s; and ¢; are unknown parameters. This representation can distort the sine wave to make it more
realistic.



- For instance consider the two curves below
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- The first curve is defined by z; = sin(27t/12).

- The second curve has harmonic terms with frequencies at %, % and % and can be written as:
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- Revisiting the equation above, this would equate to:

-s1 =1
-c1 =0
-S9 = 0.2
-co =0
-s3 =0
-c3 =0
-s4 = 0.1
-c4 =0.1

- Create a figure that contains the four separate harmonic curves (par(mfcol=c(4,1)) is one way to do this)



par (mfcol=c(4,1))

t <- seq(1,12, length.out = 1000)

plot(t, sin(2 * pi * t / 12), type='l', ylab='")

plot(t, 0.2 * sin(2 * pi *x 2 * t / 12), type '1', ylab='", ylim c(1,-1))
plot(t, 0.1 * sin(2 * pi * 4 x t / 12), type '1', ylab='"', ylim = c(1,-1))
plot(0.1 * cos(2 * pi * 4 * t / 12), type='l', ylab='', ylim = c(1,-1))
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e Now we are going to build on the model from above such that
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where wy ~ N(u = 0,02 = 12). Simulate a time series from this model with a total fo 240 time points.

t <= 1:240
mean.t <- .1 * t + sin(2 * pi * t

0.2 * sin(2 * pi * 2 x t /

0.1 * sin(2 * pi * 4 x t / 12) +

0.1 * cos(2 * pi x 4 xt /
X = mean.t+rnorm(240,0,1)
library(ggplot2)
ts.df <- data.frame( x = x, t = t)
ggplot(data=ts.df, aes(y=x, x=t)) + geom_point() + geom_line()
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- The final step is to fit a time series model. Our goal here is learn the values for s; and ¢;. To do so, we need
to construct the sine and cosine components. These serve the same purpose as covariates typically denoted
as X in a simple regression model.
t <= 1:240
SIN <- COS <- matrix(nrow = length(t), ncol=4) # restricting to 4 components
for (i in 1:4){
COS[,i] <= cos(2 * pi * i *x t / 12)
SIN[,i] <- sin(2 * pi * i * t / 12)
}

Im.harm <- lm(x ~ t + COS + SIN)
summary (1m.harm)



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Max
3.2683

Estimate Std. Error t value Pr(>|tl)

0.627
106.111
0.174
-0.636
1.415
2.242
12.342
.199
.627
.045

O O w

Call:
Im(formula = x ~ t + COS + SIN)
Residuals:

Min 1Q Median 3Q
-2.4910 -0.7051 0.0248 0.6138
Coefficients:

(Intercept) 0.0818540 0.1304565
t 0.0996195 0.0009388
Cos1 0.0159431 0.0918831
C0s2 -0.0584609 0.0918831
C0s3 0.1300433 0.0918831
C0s4 0.2060345 0.0918831
SIN1 1.1348024 0.0919451
SIN2 0.2939614 0.0918927
SIN3 0.0575998 0.0918831
SIN4 0.0041302 0.0918799
Signif. codes: 0O 's*x' 0.001 '*x*x' 0.01 'x'

Residual standard error: 1.006 on 230 degrees of freedom
0.9794
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.53099

2e-16
.86240
.52524
.15833
.02589

2e-16
.00157
.53136
.96418

0.05 '.

Multiple R-squared: 0.9801, Adjusted R-squared:

F-statistic: 1261 on 9 and 230 DF,

* k%

* k%
* %

' 0.1

p-value: < 2.2e-16
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