STAT 436 / 536 - Lecture 10: Key
 October 5, 2018

Regression with Seasonality

- We have seen the presence of seasonality in several of the datasets we have considered. This section focuses on regression techniques for seasonality.

Indicator variables for seasonality

- One approach for seasonality is to fit indicator indicator models for the seasonal components.
- Assume we are looking at monthly data (e.g. airline passengers), then we will need to include 12 indicator variables to account for each month.
- Write out a linear model for seasonality with no trend.

$$
x_{t}=s_{t}+z_{t}
$$

where $s_{t}=\beta_{i}$ when t falls in the $i^{t h}$ month and z_{t} is the residual error. Otherwise this model can be written as:

$$
x_{t}=\left\{\begin{array}{l}
\beta_{1}+z_{t} \\
\beta_{2}+z_{t} \\
\vdots \\
\beta_{12}+z_{t}
\end{array}\right.
$$

- This model can be fit in R (for the airline passengers) using the following commands

```
data("AirPassengers")
AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),
    count = as.numeric(AirPassengers))
lm(count ~ season - 1, data = AirPassengers.df)
##
## Call:
## lm(formula = count ~ season - 1, data = AirPassengers.df)
##
## Coefficients:
\begin{tabular}{lrrrrrrr} 
\#\# & season1 & season2 & season3 & season4 & season5 & season6 & season7 \\
\#\# & 241.8 & 235.0 & 270.2 & 267.1 & 271.8 & 311.7 & 351.3 \\
\#\# & season8 & season9 & season10 & season11 & season12 & &
\end{tabular}
## season8 season9 season10 season11 season12
## 351.1 302.4 
```

- Now consider the same framework with a trend too
- We can formulate this in an additive framework as

$$
x_{t}=m_{t}+s_{t}+z_{t}
$$

where $m_{t}=\alpha t$ and $s_{t}=\beta_{i}$ when t falls in the $i^{t h}$ month and z_{t} is the residual error. Otherwise this model can be written as:

$$
x_{t}=\left\{\begin{array}{l}
\alpha t+\beta_{1}+z_{t} \\
\alpha t+\beta_{2}+z_{t} \\
\vdots \\
\alpha t+\beta_{12}+z_{t}
\end{array}\right.
$$

- This model can be fit in R (for the airline passengers) using the following commands

```
data("AirPassengers")
AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),
            count = as.numeric(AirPassengers), time = 1:length(AirPassengers))
lm(count ~ time + season - 1, data = AirPassengers.df)
##
## Call:
## lm(formula = count ~ time + season - 1, data = AirPassengers.df)
##
## Coefficients:
\begin{tabular}{lrrrrrrr} 
\#\# & time & season1 & season2 & season3 & season4 & season5 & season6 \\
\#\# & 2.66 & 63.51 & 54.10 & 86.60 & 80.86 & 82.95 & 120.12 \\
\#\# & season7 & season8 & season9 & season10 & season11 & season12 & \\
\#\# & 157.13 & 154.22 & 102.89 & 64.40 & 27.99 & 54.33 &
\end{tabular}
```

- Or We can formulate this in an multiplicative framework as

$$
x_{t}=m_{t} \times s_{t} \times z_{t}
$$

where $m_{t}=\alpha$ and $s_{t}=\beta_{i}$ when t falls in the $i^{\text {th }}$ month and z_{t} is the residual error. Otherwise this model can be written as:

$$
x_{t}=\left\{\begin{array}{l}
\alpha t \times \beta_{1}+z_{t} \\
\alpha t \times \beta_{2}+z_{t} \\
\vdots \\
\alpha t \times \beta_{12}+z_{t}
\end{array}\right.
$$

- We will discuss fitting this model shortly, but note that it can be acheived with a log transform.

Harmonic seasonal models

- The indicator variables cause a stair-step like seasonal pattern where each season has a step function or a separate intercept. An alternative for a smooth seasonal pattern is to use sine and cosine functions.
- A sine wave with frequency f, phase shift ϕ, and amplitude A can be written as

$$
A \sin (2 \pi f t+\phi)
$$

```
A <- 3
f <- 4
phi <- 1
t <- seq(0,2, by=.01)
f.t <- A * sin(2 * pi * f * t + phi )
plot(t, f.t, type='l')
```


t

- The representation above is not linear, as ϕ is in the sine function; however, this can be reexpressed as

$$
A \sin (2 \pi f t+\phi)=\alpha_{s} \sin (2 \pi f t)+\alpha_{c} \cos (2 \pi f t)
$$

where $\alpha_{s}=A \cos (\phi)$ and $\alpha_{c}=A \sin (\phi)$. This representation is linear in the parameters α_{s} and α_{c} and standard techniques (OLS) can be used to estimate these parameters.

- Using this framework for harmonics with a time series $\left\{x_{t}\right\}$ with s seasons results in [$s / 2$] possible cycles, where [] retains the integer.
- This model can be written as

$$
x_{t}=m_{t}+\sum_{i=1}^{[s / 2]}\left(s_{i} \sin (2 \pi i t / s)+c_{i} \cos (2 \pi i t / s)\right)+z_{t}
$$

where s_{i} and c_{i} are unknown parameters. This representation can distort the sine wave to make it more realistic.

- For instance consider the two curves below

- The first curve is defined by $x_{t}=\sin (2 \pi t / 12)$.
- The second curve has harmonic terms with frequencies at $\frac{1}{12}, \frac{2}{12}$ and $\frac{4}{12}$ and can be written as:

$$
\begin{aligned}
x_{t} & =\sin (2 \pi(t) / 12) \\
& +0.2 \sin (2 \pi(2 t) / 12) \\
& +0.1 \sin (2 \pi(4 t) / 12) \\
& +0.1 \cos (2 \pi(4 t) / 12)
\end{aligned}
$$

- Revisiting the equation above, this would equate to:
$-s_{1}=1$
$-c_{1}=0$
$-s_{2}=0.2$
$-c_{2}=0$
$-s_{3}=0$
$-c_{3}=0$
$-s_{4}=0.1$
$-c_{4}=0.1$
- Create a figure that contains the four separate harmonic curves ($\operatorname{par}(\operatorname{mfcol}=c(4,1))$ is one way to do this)

- Now we are going to build on the model from above such that

$$
\begin{aligned}
x_{t} & =.05 * t \\
& +\sin (2 \pi(t) / 12) \\
& +0.2 \sin (2 \pi(2 t) / 12) \\
& +0.1 \sin (2 \pi(4 t) / 12) \\
& +0.1 \cos (2 \pi(4 t) / 12) \\
& +w_{t}
\end{aligned}
$$

where $w_{t} \sim N\left(\mu=0, \sigma^{2}=1^{2}\right)$. Simulate a time series from this model with a total fo 240 time points.

```
t <- 1:240
mean.t <- .1 * t + sin(2 * pi * t / 12) +
    0.2 * sin(2 * pi * 2 * t / 12) +
    0.1 * sin(2 * pi * 4 * t / 12) +
    0.1 * cos(2 * pi * 4 * t / 12)
x = mean.t+rnorm(240,0,1)
library(ggplot2)
ts.df <- data.frame( x = x, t = t)
ggplot(data=ts.df, aes(y=x, x=t)) + geom_point() + geom_line()
```


- The final step is to fit a time series model. Our goal here is learn the values for s_{i} and c_{i}. To do so, we need to construct the sine and cosine components. These serve the same purpose as covariates typically denoted as X in a simple regression model.

```
t <- 1:240
SIN <- COS <- matrix(nrow = length(t), ncol=4) # restricting to 4 components
for (i in 1:4){
    COS[,i] <- cos(2 * pi * i * t / 12)
    SIN[,i] <- sin(2 * pi * i * t / 12)
}
lm.harm <- lm(x ~ t + COS + SIN)
summary(lm.harm)
```

```
##
## Call:
## lm(formula = x ~ t + COS + SIN)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -2.4910 & -0.7051 & 0.0248 & 0.6138 & 3.2683
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 0.0818540 0.1304565 0.627 0.53099
## t 0.0996195 0.0009388 106.111 < 2e-16 ***
## COS1 0.0159431 0.0918831 0.174 0.86240
## COS2 -0.0584609 0.0918831 -0.636 0.52524
## COS3 0.1300433 0.0918831 1.415 0.15833
## COS4 0.2060345 0.0918831 2.242 0.02589 *
## SIN1 1.1348024 0.0919451 12.342 < 2e-16 ***
## SIN2 0.2939614 0.0918927 3.199 0.00157 **
## SIN3 0.0575998 0.0918831 0.627 0.53136
## SIN4 }0.0041302 0.0918799 0.045 0.96418 
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.006 on 230 degrees of freedom
## Multiple R-squared: 0.9801, Adjusted R-squared: 0.9794
## F-statistic: 1261 on 9 and 230 DF, p-value: < 2.2e-16
```

