STAT 436 / 536 - Lecture 10: Key

October 5, 2018

Regression with Seasonality

We have seen the presence of seasonality in several of the datasets we have considered. This section
focuses on regression techniques for seasonality.

Indicator variables for seasonality

- One approach for seasonality is to fit indicator indicator models for the seasonal components.
- Assume we are looking at monthly data (e.g. airline passengers), then we will need to include 12 indicator variables to account for each month.
- Write out a linear model for seasonality with no trend.

$$x_t = s_t + z_t$$

where $s_t = \beta_i$ when t falls in the ith month and z_t is the residual error. Otherwise this model can be written as:

$$x_t = \begin{cases} \beta_1 + z_t \\ \beta_2 + z_t \\ \vdots \\ \beta_{12} + z_t \end{cases}$$

• This model can be fit in R (for the airline passengers) using the following commands

```
data("AirPassengers")
AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),
                                count = as.numeric(AirPassengers))
lm(count ~ season - 1, data = AirPassengers.df)
##
## Call:
## lm(formula = count ~ season - 1, data = AirPassengers.df)
##
## Coefficients:
##
    season1
             season2
                        season3
                                   season4
                                             season5
                                                       season6
                                                                  season7
                235.0
                                                                    351.3
##
      241.8
                          270.2
                                     267.1
                                               271.8
                                                         311.7
##
    season8
              season9 season10
                                 season11
                                            season12
##
      351.1
                302.4
                          266.6
                                     232.8
                                               261.8
```

- Now consider the same framework with a trend too
- We can formulate this in an additive framework as

$$x_t = m_t + s_t + z_t$$

where $m_t = \alpha t$ and $s_t = \beta_i$ when t falls in the i^{th} month and z_t is the residual error. Otherwise this model can be written as:

$$x_t = \begin{cases} \alpha t + \beta_1 + z_t \\ \alpha t + \beta_2 + z_t \\ \vdots \\ \alpha t + \beta_{12} + z_t \end{cases}$$

- This model can be fit in R (for the airline passengers) using the following commands

```
data("AirPassengers")
AirPassengers.df <- data.frame(season = as.factor(as.numeric(cycle(AirPassengers))),</pre>
                 count = as.numeric(AirPassengers), time = 1:length(AirPassengers))
lm(count ~ time + season - 1, data = AirPassengers.df)
##
## Call:
## lm(formula = count ~ time + season - 1, data = AirPassengers.df)
##
## Coefficients:
##
       time
              season1
                         season2
                                    season3
                                               season4
                                                         {\tt season5}
                                                                    season6
##
       2.66
                 63.51
                           54.10
                                      86.60
                                                 80.86
                                                            82.95
                                                                     120.12
##
    season7
              {\tt season8}
                                                        season12
                         season9
                                   season10
                                             season11
##
     157.13
               154.22
                          102.89
                                      64.40
                                                 27.99
                                                           54.33
```

• Or We can formulate this in an multiplicative framework as

$$x_t = m_t \times s_t \times z_t$$

where $m_t = \alpha t$ and $s_t = \beta_i$ when t falls in the ith month and z_t is the residual error. Otherwise this model can be written as:

$$x_{t} = \begin{cases} \alpha t \times \beta_{1} + z_{t} \\ \alpha t \times \beta_{2} + z_{t} \\ \vdots \\ \alpha t \times \beta_{12} + z_{t} \end{cases}$$

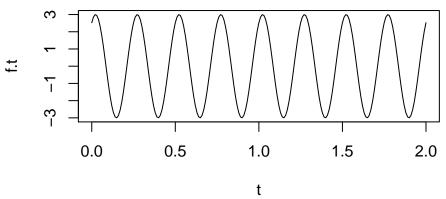
• We will discuss fitting this model shortly, but note that it can be acheived with a log transform.

Harmonic seasonal models

- The indicator variables cause a stair-step like seasonal pattern where each season has a step function or a separate intercept. An alternative for a smooth seasonal pattern is to use sine and cosine functions.
- A sine wave with frequency f, phase shift ϕ , and amplitude A can be written as

$$A\sin(2\pi ft + \phi)$$

```
A <- 3
f <- 4
phi <- 1
t <- seq(0,2, by=.01)
f.t <- A * sin(2 * pi * f * t + phi )
plot(t, f.t, type='l')
```



- The representation above is not linear, as ϕ is in the sine function; however, this can be reexpressed as

$$A\sin(2\pi ft + \phi) = \alpha_s \sin(2\pi ft) + \alpha_c \cos(2\pi ft),$$

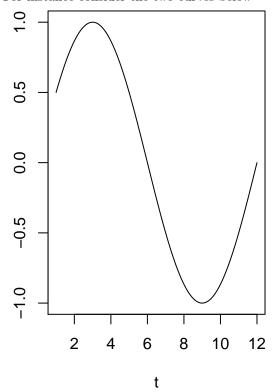
where $\alpha_s = A\cos(\phi)$ and $\alpha_c = A\sin(\phi)$. This representation is linear in the parameters α_s and α_c and standard techniques (OLS) can be used to estimate these parameters.

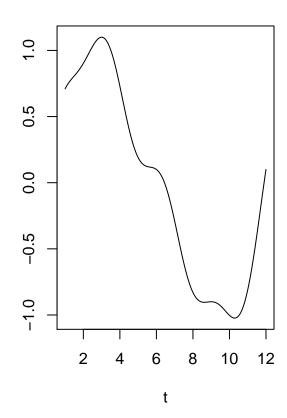
- Using this framework for harmonics with a time series $\{x_t\}$ with s seasons results in [s/2] possible cycles, where [] retains the integer.
- This model can be written as

$$x_t = m_t + \sum_{i=1}^{[s/2]} (s_i \sin(2\pi i t/s) + c_i \cos(2\pi i t/s)) + z_t$$

where s_i and c_i are unknown parameters. This representation can distort the sine wave to make it more realistic.

- For instance consider the two curves below





- The first curve is defined by $x_t = \sin(2\pi t/12)$.
- The second curve has harmonic terms with frequencies at $\frac{1}{12}$, $\frac{2}{12}$ and $\frac{4}{12}$ and can be written as:

$$x_t = \sin(2\pi(t)/12)$$
+ $0.2\sin(2\pi(2t)/12)$
+ $0.1\sin(2\pi(4t)/12)$
+ $0.1\cos(2\pi(4t)/12)$

- Revisiting the equation above, this would equate to:

$$-s_1 = 1$$

$$-c_1 = 0$$

$$-s_2 = 0.2$$

$$-c_2 = 0$$

$$-s_3 = 0$$

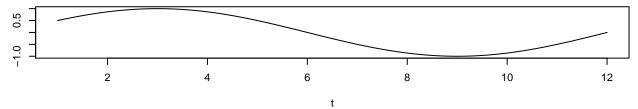
$$-c_3 = 0$$

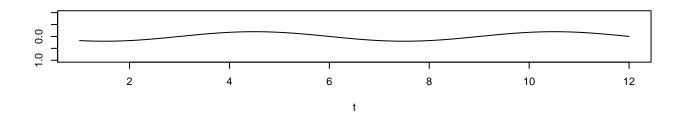
$$-s_4 = 0.1$$

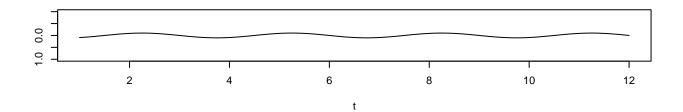
$$-c_4 = 0.1$$

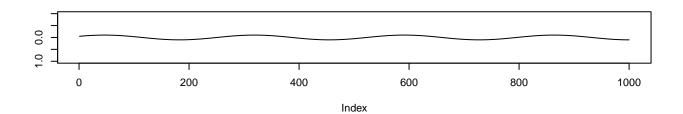
- Create a figure that contains the four separate harmonic curves (par(mfcol=c(4,1)) is one way to do this)

```
par(mfcol=c(4,1))
t <- seq(1,12, length.out = 1000)
plot(t, sin(2 * pi * t / 12), type='l', ylab='')
plot(t, 0.2 * sin(2 * pi * 2 * t / 12), type = 'l', ylab='', ylim = c(1,-1))
plot(t, 0.1 * sin(2 * pi * 4 * t / 12), type = 'l', ylab='', ylim = c(1,-1))
plot(0.1 * cos(2 * pi * 4 * t / 12), type='l', ylab='', ylim = c(1,-1))</pre>
```





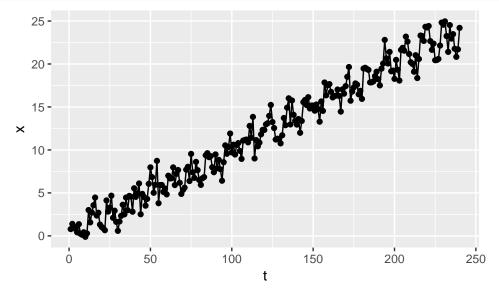




• Now we are going to build on the model from above such that

```
\begin{array}{rcl} x_t & = & .05 * t \\ & + & \sin(2\pi(t)/12) \\ & + & 0.2\sin(2\pi(2t)/12) \\ & + & 0.1\sin(2\pi(4t)/12) \\ & + & 0.1\cos(2\pi(4t)/12) \\ & + & w_t \end{array}
```

where $w_t \sim N(\mu = 0, \sigma^2 = 1^2)$. Simulate a time series from this model with a total fo 240 time points.



- The final step is to fit a time series model. Our goal here is learn the values for s_i and c_i . To do so, we need to construct the sine and cosine components. These serve the same purpose as covariates typically denoted as X in a simple regression model.

```
t <- 1:240
SIN <- COS <- matrix(nrow = length(t), ncol=4) # restricting to 4 components
for (i in 1:4){
   COS[,i] <- cos(2 * pi * i * t / 12)
   SIN[,i] <- sin(2 * pi * i * t / 12)
}
lm.harm <- lm(x ~ t + COS + SIN)
summary(lm.harm)</pre>
```

```
##
## Call:
## lm(formula = x ~ t + COS + SIN)
## Residuals:
##
      Min
               1Q Median
                              3Q
                                    Max
## -2.4910 -0.7051 0.0248 0.6138 3.2683
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.0818540 0.1304565
                                    0.627 0.53099
              0.0996195  0.0009388  106.111  < 2e-16 ***
## t
## COS1
              0.0159431 0.0918831
                                    0.174 0.86240
## COS2
              -0.0584609 0.0918831 -0.636 0.52524
## COS3
              0.1300433 0.0918831
                                    1.415 0.15833
## COS4
              0.2060345 0.0918831
                                    2.242 0.02589 *
## SIN1
              1.1348024 0.0919451 12.342 < 2e-16 ***
## SIN2
              0.2939614 0.0918927
                                    3.199 0.00157 **
## SIN3
              0.0575998 0.0918831
                                    0.627 0.53136
                                   0.045 0.96418
## SIN4
              0.0041302 0.0918799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.006 on 230 degrees of freedom
## Multiple R-squared: 0.9801, Adjusted R-squared: 0.9794
## F-statistic: 1261 on 9 and 230 DF, p-value: < 2.2e-16
```