
STAT 436 / 536 - Lecture 12: Key
Stationary Models

Time series data sets often have components that can be identified and modeled in a deterministic fashion.
In particular, using regression we can fit models with:

- trends

- seasonal patterns

- autoregressive components of the series itself

- covariate information (potentially of an autoregressive fashion too.)

- As a result, with a well fit regression model, there should not be remaining determinstic features (such as
trends or seasonal components) in the residuals of the model. However, the residuals will often be correlated
in time.

- Two examples referenced in the textbook would be:

1. monthly values of the southern oscillation index tend to change slowly and may give rise to persistant
weather patterns.

2. Negative correlation can also occur, such as an unusually high value (in monthly sales) followed by an
unusually low value the previous month.

• We have seen problems related to inference when serial correlation is present in the data; hence, our
goal is fit a model to address the correlation in the residuals for valid inference.
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• One approach that we have seen is to use an autoregressive process, where AR(p) denotes an autore-
gressive process of order p

xt = α1xt−1 + · · ·+ αpxt−p

• AR processes can be used for modeling the time series itself, with covariates, or for the residuals.

Stationary Processes

We have talked about stationarity, but now we focus on more details.

- A time series model {xt} is strictly stationary if the joint distribution of (xt1 , . . . , xtn) is the same as that of
(xt1+m, . . . , xtn+m). In other words, if the distribution is the same after a shift of m time units.

- Strict stationarity implies that the mean and variance are constant.

- Strict stationarity also implies that the autocorrelation between xt and xt+k only depends on k and not t.

- It is possible for a series to have constant mean and variance, and also have an autocorrelation function that
depends only on the lag k, but not be strictly stationary. These series are known as second-order stationary
processes.

- Stationary is a desirable property of modeling time series data. Fitting a model with stationarity assumptions,
implies that the time series (could be a residual one) is indeed a realization from a stationary process.

- Therefore, the series should be checked to determine if evidence of a trend or seasonal effects persist. Linear
modeling (regression) can be used fit the trend or seasonal patterns.

- Thus, after checking residual diagnostics, it is reasonable to treat the residual time series as a stationary
process.
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Moving Average Models

• We have seen AR processes, but another way to handle serial correlation is with a moving average
(MA) process.

• Formally, a MA process of order q is a linear combination of the current white noise term and the q
most recent white noise terms

xt = wt + β1wt−1 + . . . βpwt−p

where wt is a zero mean white noise term and the β values form the linear combination.

• Recall and AR process of order p (with white noise) can be written as

xt = wt + α1xt−1 + . . . αpxt−p

. Note that the AR process is a linear combination of past realizations, whereas the MA process is a
linear combination of the noise terms.

Moving Average Computation

1. Simulate a moving average process of order 2, finish code below.

## SETUP PARAMETERS
q <- 2
beta <- c(.6, .1)
sigma <- 1
num.time <- 100

# INITILIZATION
x <- rep(0, num.time)
w <- rnorm(num.time , mean = 0, sd = sigma )

# SIMULATE TIME PTS 1 AND 2
x[1] <- w[1]
x[2] <- w[2] + beta[1] * w[1]

# NOW SIMULATE TIME PTS 3 - NUM.TIME
for (time.pt in 3:num.time){

x[time.pt] <- w[time.pt] + beta[1] * w[time.pt - 1] + beta[2] * w[time.pt - 2]
}

2. Simulate several realizations from this MA process and track the mean and variances. Can you determine
what the mean and variance of the process should be? (Either mathematically or computationally (hint
β matters for one of these))

3. Select several different values of beta and plot the resultant process. Can you summarize the impacts of
the β values?

4. Use the ACF and PACF to look the serial correlation in the series.
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• The moving average process can also be written using the backshift operator B.

xt = (1 + β1B + · · ·+ βqB
q)wt = φq(B)wt

• The MA process consists of a linear combination of a finite sum of stationary white noise terms, hence
the MA process is stationary with time-invariant mean and autocorrelation.

• The means can be derived as:

E[xt] = E[wt + β1wt−1 + . . . βpwt−p] = 0

as E[wt] = 0∀t

• Similarly the variance can be computed as:

V ar[xt] = V ar[wt+β1wt−1+. . . βqwt−q] = V ar(wt)+β2
1V ar(wt−1)+· · ·+betaqV ar(wt−q) = (1+β2

1+· · ·+β2
q )σ2

as V ar(wt) = σ2

• The autocorrelation function for lag k has three possible values:

1. when k = 0, γk = 1

2. when k > q, γk = 0

3. for k = 1, . . . , q, ρk =
∑q−k

i=0
βiβi+k∑q

i=0
β2

i

, where β0 is defined as 1.

• Consider two MA(1) processes with coefficients equal to β = .5 and β = 2 and calculate the correlation
ρ1. *we get β1

1+β2
1
, which results in 1/2

1+1/4 and 2
1+4 these values give the same serial correlation.
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• The idea of invertibility is focused on a unique representation of an MA process.

• An MA process in invertible if it can be expressed as a stationary AR process of infinite order without
an error term. In other words, using the MA process xt = (1 + βB)wt, then xt = wt + βwt−1 and
wt−1 = xt−1 − βwt−2. Using this idea in a recursive manner

xt = wt + βxt−1 − β2xt−2 + β3xt−3 − β4xt−4 + . . .

with |β| < 1.

• Recall the characteristic equation was used to determine stationarity of an AR process. Hence, an
MA(q) process is invertible when the roots of φq(B) all exceed 1.

• Most importantly, a MA(q) process is unique only if invertibility is imposed.

Fitting MA processes

• The arima function in r can be used to fit an MA process.

• The arima function has an order argument that is : “A specification of the non-seasonal part of the
ARIMA model: the three integer components (p, d, q) are the AR order, the degree of differencing, and
the MA order.”

• Furthermore, “The exact likelihood is computed via a state-space representation of the ARIMA process,
and the innovations and their variance found by a Kalman filter. The initialization of the differenced
ARMA process uses stationarity and is based on Gardner et al (1980).”

• Finally return to your simulation and fit the simulated MA models.
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