
STAT 436 / 536 - Lecture 13: Key
ARMA Process

• Thus far we have fit either AR(p) processes

xt = α1xt−1 + α2xt−2 + · · · + αpxt−p + wt

or MA(q) processes
xt = wt + β1wt−1 + . . . βqwt−q

• However, it would be reasonable to want to fit both at the same time. This results an ARMA model.

xt = α1xt−1 + α2xt−2 + · · · + αpxt−p + wt + β1wt−1 + . . . βqwt−q

• ARMA models can be written using the polynomial expression with the characteristic equations:

θp(B)xt = φq(B)wt

There are several key points about an ARMA(p,q) process:

a. The process is stationary when the absolute value of the roots of θ all exceed 1.

b. The process is invertible when the absolute value of the roots of φ all exceed 1.

c. An AR(p) model is a special case of an ARMA model, specifically ARMA(p,0).

d. Similarly, the MA(q) model is a special case of an ARMA(0,q) model.

e. When fitting to data, an ARMA model will often be more parameter efficient than a single AR or MA
model.

f. When θ and φ share a common factor, a stationary model can be simplified. For example, with

(1 − 1
2B)(1 − 1

3B)xt = (1 − 1
2B)wt

can be simplified to
(1 − 1

3B)xt = wt.
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Simulation and Model Fitting

• The r function arima.sim allows simulation from ARMA processes.
set.seed(10312018)
#install.packages('fpp')
library(fpp)
ar.1 <- arima.sim(n = 100, model = list(ar = .7))
ggtsdisplay(ar.1)
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#install.packages('fpp')
library(fpp)
ma.1 <- arima.sim(n = 100, model = list(ma = .7))
ggtsdisplay(ma.1)
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- Consider fitting the arma.1 series that is simulated from an AR(1) process using both an AR model and a
MA model. How should we choose?
arima(ar.1, order = c(1,0,0))

##
## Call:
## arima(x = ar.1, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.5834 -0.2841
## s.e. 0.0833 0.2505
##
## sigma^2 estimated as 1.12: log likelihood = -147.76, aic = 301.51

arima(ar.1, order = c(0,0,1))
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##
## Call:
## arima(x = ar.1, order = c(0, 0, 1))
##
## Coefficients:
## ma1 intercept
## 0.5054 -0.2871
## s.e. 0.0815 0.1664
##
## sigma^2 estimated as 1.229: log likelihood = -152.36, aic = 310.73

arima(ma.1, order = c(1,0,0))

##
## Call:
## arima(x = ma.1, order = c(1, 0, 0))
##
## Coefficients:
## ar1 intercept
## 0.5036 0.1840
## s.e. 0.0883 0.2113
##
## sigma^2 estimated as 1.122: log likelihood = -147.81, aic = 301.62

arima(ma.1, order = c(0,0,1))

##
## Call:
## arima(x = ma.1, order = c(0, 0, 1))
##
## Coefficients:
## ma1 intercept
## 0.7903 0.1884
## s.e. 0.0655 0.1705
##
## sigma^2 estimated as 0.9151: log likelihood = -137.95, aic = 281.9

- We have seen the predictive framework, but AIC is often used as well. In fact the auto.arima function
automatically selects the best model based on AIC.
auto.arima(ar.1, max.d = 0)

## Series: ar.1
## ARIMA(1,0,0) with zero mean
##
## Coefficients:
## ar1
## 0.6026
## s.e. 0.0818
##
## sigma^2 estimated as 1.145: log likelihood=-148.37
## AIC=300.74 AICc=300.86 BIC=305.95

auto.arima(ma.1, max.d = 0)
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## Series: ma.1
## ARIMA(0,0,1) with zero mean
##
## Coefficients:
## ma1
## 0.7930
## s.e. 0.0646
##
## sigma^2 estimated as 0.9355: log likelihood=-138.55
## AIC=281.11 AICc=281.23 BIC=286.32
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