
STAT 436 / 536 - Lecture 14: Key
State Space Models

• Most statistical analysis focuses on static parameter estimation; in other words, all of the values of
the parameters are considered fixed across time. This is true for regression models, but what about
ARIMA models and exponentially weighted moving average models?

• The inherent assumption in these models is that the relationships are constant. Sometimes there are
fundamental processes that might change in time such that the relationship between the variables and
the response are not constant. Consider the relationship between housing prices and square footage.

• State-space models and more specifically, Dynamic Linear Models (DLMs) can model parameter values
with dynamics. Furthermore, these models also contain all of the static frameworks that we have
previously studied.

A state space model is typically expressed using two levels, the observation equation and state equation:

1. Observation Equation: The observation equation is focused on the data generating mechanism for the
data you actually observe.

2. State or Evolution Equation: This captures the dynamics of a unobservable (latent) variable. The state
vector contains the relevant information for summarizing the past behavior and is used to model the
future as a function of the past.

Consider the example:

yt = θt + εt (Observation Equation)
θt = θt−1 + wt (Evolution Equation),

where εt ∼ N(0, σ2) and wt ∼ N(0, σ2
w). Note that ν, σ2, and σ2

w are all assumed known, but they can
easily be estimated in an MCMC procedure.
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Dynamic Linear Models

• Now consider the following representation:

xt = F̃T θ̃t + vt

θ̃t = G ˜θt−1 + wt,

where θ̃t is known as the state vector for time t, F̃ is vector of known constants or regressors, vt is
observation noise, G is the state evolution matrix which is typically assumed known, and wt is the
innovation noise.

• Dynamic linear models are a broad class of models that incoporate many existing models we have seen
in this class.

• What do we have if: G is an identity matrix, and wt = 0 ∀t? Thus θ̃t = θ̃t−1 = θ̃, so this can be
re-written as

xt = F̃T θ̃ + vt

, what if F = X and θ̃ = β̃? This is just standard regression.

- Recall an autoregressive model can be written as

xt = α1xt−1 + · · ·+ αpxt−p + wt

- How can we write an AR model in the DLM framework? Starting from the last model, let F̃ = (xt−1, . . . xt−p)
and θ̃ = (α1, . . . , αp) Thus θ̃t = θ̃t−1 = θ̃, so this can be re-written as

xt = F̃T θ̃ + vt.

- Now what would it mean if wt is non-zero in the two previous models? There would be time-varying
coefficients
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Exponential Smoothing

• The exponential smoothing techniques (Holt-Winters) can be re-imagined in a state-space framework.
In particular there is an entire book on this subject. Forecasting with Exponential Smoothing: The State
Space Approach by Hyndman, Koehler, Ord and Snynder is a Spring book with a free e-link through
the library.

• In this book the exponential smoothing techniques are referred to by the following three components:
– T (Trend): Long-term direction of the series
– S (Seasonal): Pattern that repeats with a known periodicity
– E (Error): Unpredictable component of the series.

- The methods are even generalized beyond what we have seen. For example consider the trend component,
which is a combination of the level term (mean or intercept) and the growth term (slope). An additional
term (0 < φ < 1) is introduced to fit a dampening pattern. Let Th be the forecast trent over the next h time
periods.

1. Th = l No trend

2. Th = l + bh Additive

3. Th = l + (φ+ φ2 + · · ·+ φh)b Additive, damped

4. Th = lbh Multiplicative

5. Th = lb(φ+φ2+···+φh) Multiplicative, damped

- Furthermore, these can be generalized and combined with three levels of the seasonal component (None,
Additive, Multiplicative) to create a set of 15 models. These 15 models would incorporate all of the exponential
smoothing models we have seen thus far: No trend and no seasonal component would be the simple exponential
smoothing method, additive and additive is the Holt-Winters 3-parameter model.

3



- Recall that the exponential smoothing techniques do not have a probabilistic interpretation (For creating
confidence intervals), but rather only produce point estimates:

ŷt+1 = αyt + (1− α)ŷt

or

ŷt+h = lt + bth

lt = αyt + (1− α)(lt−1 + bt−1)
bt = β(lt − lt−1) + (1− β)bt−1

- We now consider the state-space representations for a one-step ahead prediction with Holt’s Linear Method:

ŷt+1 = lt + bt + εt

lt = lt−1 + bt−1αεt

bt = bt−1 + β(lt − lt−1 − bt−1) = bt−1 + αβεt

where εt = yt − µt.

- Using standard notation, let

yt = [1 1]xt−1 + εt,

xt =
[
1 1
0 1

]
xt−1 +

[
α
αβ

]
εt,

where the state vector xt = (lt, bt).

- Once a distribution is specified for εt, the model is fully specified and can be estimated. Typically,
εt ∼ N(0, σ2)
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State Space Model Estimation

• The major benefit of the state-space model framework in this situation is a likelihood-based approach
that permits uncertainty calculation and likelihood-based model comparison.

• The state-space framework requires initial values for the state components, say x0. From a Bayesian
perspective, this is a prior distribution.

• With only a single source of error, σt ∼ N(0, σ2), Kalman filtering equations are not required in this
setting.

• The forecast package contains the ets function for fitting smoothing models with a state-space
framework.

• The ets function permits specifying a model directly using: A (additive), M (multiplicative), and N
(none). Additionally, the model can be automatically selected.

library(forecast)
ggtsdisplay(USAccDeaths)
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fit <- ets(USAccDeaths); fit
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## ETS(A,N,A)
##
## Call:
## ets(y = USAccDeaths)
##
## Smoothing parameters:
## alpha = 0.5946
## gamma = 0.002
##
## Initial states:
## l = 9248.3628
## s = -51.3449 -255.3528 218.2901 -121.771 970.7387 1683.237
## 756.092 306.4212 -489.5627 -739.9004 -1537.792 -739.0552
##
## sigma: 292.6907
##
## AIC AICc BIC
## 1140.145 1148.716 1174.295
plot(forecast(fit))
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• Look at the Bozeman Air Quality data for July 3 - 31, 2018 and fit an ets model.
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library(readr)
library(dplyr)
library(rvest)
scrape_BZNPM_Jul <- function(days){

# Scrapes hourly PM2.5 readings in Bozeman for July 2018
# inputs: sequence of days
# outputs: data frame that contains day, hour, and hourly average PM2.5 concentration.
smoke.df <- data.frame(day = NULL, hour = NULL, conc = NULL)

for (d in days){
bzn_aq <- read_html(paste("http://svc.mt.gov/deq/todaysair/AirDataDisplay.aspx?siteAcronym=BH&targetDate=7/",d,"/2018", sep=''))
daily.smoke <- cbind(rep(d,24),html_table(bzn_aq)[[1]][,1:2])
colnames(daily.smoke) <- c('day','hour','conc')
daily.smoke$conc[daily.smoke$conc == 'DU'] <- 'NA'
daily.smoke$conc <- as.numeric(daily.smoke$conc)
smoke.df <- bind_rows(smoke.df,daily.smoke)

}
return(smoke.df)

}
air.quality <- scrape_BZNPM_Jul(3:31)

Exponential Smoothing Models with Regression Parameters

• One drawback of the exponential smoothing techniques is that regressor variables typically cannot be
included in the model.

• Regressor variables can take two forms:
– Explanatory variables such as the number of cups of coffee sold the previous day, or the weather

the day before.
– Intervention variables, which typically take the form of an indicator variables, for things like special

holidays or extreme weather events. In the taxi data set some of the lowest use days were major
snow storms in NYC.

• The general state-space model for the exponential smoothing framework can be written as:

yt = wxt + εt

xt = Fxt−1 + gεt

now consider the extension

yt = wxt + zθ + εt

xt = Fxt−1 + gεt,

where z are regression variables and θ are the associated covariates. The ets function does not permit
variables, but instead users are encouraged to consider the DLM implementation of the ARIMA model
framework.
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