
STAT 436 / 536 - Lecture 15
State Space Models

• Recall the innovations form of the state space model that we discussed last time has the following form:

yt = w̃T x̃t + εt

x̃t = Fx̃t−1 + gεt,

where only a single error term, εt, exists.

• Now, contrast this with a state space model below

ARMA Models

• The ARMA(p,q) model can be written compactly as

• Consider the following specification: w̃T = (1 0), x̃t =, vt = 0, F =
[
α1 1
α2 0

]
, R = (1 0)T

yt = (1 0)
(
x1,t

x2,t

)
(
x1,t

x2,t

)
=

[
α1 1
α2 0

](
x1,t−1
x2,t−1

)
+
(

1
0

)
wt

• The observation equation is:

• For the state equation, we have:
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• The final step is to simplify x1,t by substituting x2,t−1. Thus,

• Similarly, an ARMA(2,1) model can be specified as: w̃T = (1 0), vt = 0, F =
[
α1 1
α2 0

]
, R = (1 β)T

yt = (1 0)
(
x1,t

x2,t

)
(
x1,t

x2,t

)
=

[
α1 1
α2 0

](
x1,t−1
x2,t−1

)
+
(

1
β

)
wt

Watch for a homework question about this!

• Recall (536 students) there were two assumptions for state space models.

1. The state vector and

2. The observed values are

2



• A major benefit of the state-space model framework is that we can easily integrate the stochastic
modeling approach for serial correlation (ARMA) directly with additional covariates.

• For instance consider the following model:

yt = (1 0 )

x1,t

x2,t


x1,t

x2,t

 =

α1 1 0
α2 0 0
0 0 1

x1,t−1
x2,t−1

+

1
0
0

wt

• What is this model? Specifically, what are zt and β? How could we add dynamics to β?

• The dlm package contains functions for fitting general models of this type. Standard MCMC algorithms
can also be constructed for these models, but we will also have a 536-specific lab that introduces
Sequential Monte Carlo (SMC) methods that can be used for this type of model in general.

• The auto.arima() function in the forecast package does have the option to include covariates.
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Exercise

• Use the auto.arima() function to model the pastry count. Assume that we are looking at this through
the lens of explanatory inference, in other words you need to explain to a baker what you see in your
model.:

1. Change the frequency of the ts object from 1 to 7, what do you see? why are there differences?

2. Include the number of coffee drinks purchased on the same day as a covariate, how does the model
change?

3. How do the model using the ARMA structure compare to a standard linear regression model?

4. As in Lab 7, assume our goal was to predict the number pastries consumed tomorrow, how would your
model change?

5. What if the baker was interested in both the number of pastries and the number of cups of coffee to
prepare for tomorrow. How would this be modeled?

library(readr)
library(dplyr)
library(forecast)
bakery_sales <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/BreadBasket.csv')

pastry_count <- bakery_sales %>%
filter(Item %in% c('Pastry','Scandinavian','Medialuna','Muffin','Scone')) %>%
group_by(Date) %>% tally() %>% rename(num_pastry = n)

drink_count <- bakery_sales %>% filter(Item %in% c('Coffee','Tea')) %>%
group_by(Date) %>% tally() %>% rename(num_drink = n)

ggtsdisplay(ts(pastry_count$num_pastry))
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