
STAT 436 / 536 - Lecture 16: Key
Modeling Non-Stationary Time Series

• Many time series models are non-stationary. Recall a time series is stationary if the mean and variance
are constant in time and the autocorrelation only depends on the lag between two time points.

• One of our current strategies for non-stationary time series models is to include a regression component
for trends or seasonal cycles.

• When using a regression model, the interest shifts to the residuals. In particular, the residuals should
satisfy stationarity.

• We also have seen that differencing a random walk results in a stationary series. A random walk can be
written as

xt = xt−1 + wt

and then the differenced series
Oxt = xt − xt−1 = wt

just results in white noice, and hence, is stationary.

So why is stationarity important?

- Stationarity is a particular kind of dependence structure, one that enables easier modeling of the sequence of
random variables. Given a stationary sequence, the ARMA suite of tools can be used to model and explain
the dependence structure.

- When stationarity is not present, differencing (as in the random walk), is used to try to obtain a resulting
series that is stationary.
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Diagnosing a non-stationary series

• Sometimes a non-stationary series can be diagnosed visually:
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Monthly Airline Passenger Count

In fact, this is often what we use for residual diagnostics.

• The characteristic equation can be used to determine if a series is stationary, assuming the parameter
values are known.

xt = xt−1 −
1
4xt−2 + wt(

1
4B

2 −B + 1
)
xt = wt

polyroot(c(1, -1, .25))

## [1] 2+0i 2-0i

stationary

xt = xt−1 + wt

(B − 1)xt = wt

polyroot(c(-1, 1))

## [1] 1+0i

non-stationary
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xt = 1
2xt−1 + 1

2xt−2 + wt(
−1

2B
2 − 1

2B + 1
)
xt = wt

polyroot(c(1, -.5, -.5))

## [1] 1-0i -2+0i

non-stationary

• One last way to diagnose stationarity is to use a unit root test. This is closely related to the idea of a
random walk as a unit root corresponds to the solution of the polynomial equation of an AR 1 model.

- The arima.sim() function will return an error if you try to simulate a non-stationary model.
arima.sim(n = 100, list(ar = c(1)))

## Error in arima.sim(n = 100, list(ar = c(1))): 'ar' part of model is not stationary

• The Arima and auto.arima can be used to assess for stationary with the a fitted model; however,
there are restrictions in the model that generally result in non-stationary models being fitted (with the
integrated piece).

library(forecast)
#autoplot(WWWusage)
plot(auto.arima(WWWusage, stationary = T))
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- Furthermore, the auto.arima package will also select models that “integrate” the data to create a differenced
series that will be stationary.
auto.arima(WWWusage)

## Series: WWWusage
## ARIMA(1,1,1)
##
## Coefficients:
## ar1 ma1
## 0.6504 0.5256
## s.e. 0.0842 0.0896
##
## sigma^2 estimated as 9.995: log likelihood=-254.15
## AIC=514.3 AICc=514.55 BIC=522.08

Integrated Model

• A model is ‘integrated’ with order d, denoted I(d), if the dth difference of {xt} is white noise.

Odxt = wt

(1−B)dxt = wt

When d = 1 this is a random walk.
rw <- arima.sim(n=500, list( order = c(0,1,0)))
autoplot(rw)
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auto.arima(rw)

## Series: rw
## ARIMA(0,1,0)
##
## sigma^2 estimated as 1.018: log likelihood=-714.03
## AIC=1430.06 AICc=1430.07 BIC=1434.27

• The integrated component can also be combined with ARMA models to form an ARIMA.

θp(B)(1−B)dxt = φq(B)wt

is an ARIMA(p, d, q) model.

• For instance,

xt = αxt−1 + xt−1 − αxt−2 + wt + βwt−1

xt − αxt−1 − xt−1 + αxt−2 = wt + βwt−1

(1− αB)(1−B)dxt = (1 + βB)wt

is an ARIMA model of order (1,1,1) with an AR parameter of α and an MA parameter of β.

• Recall the taxi data set. Run the code below and discuss the results.
taxi.rides <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/taxi.csv')

taxirides.diff <- taxi.rides %>% arrange(year, month, day) %>% slice(-c(1:4)) %>%
mutate(week.numb = rep(1:234, each = 7)) %>% group_by(week.numb) %>%
summarize(total.rides = sum(n)) %>% select(total.rides) %>% pull() %>% diff()

auto.arima(taxirides.diff)

## Series: taxirides.diff
## ARIMA(3,0,1) with zero mean
##
## Coefficients:
## ar1 ar2 ar3 ma1
## -0.1069 -0.3432 -0.2949 -0.2583
## s.e. 0.1406 0.0650 0.0812 0.1419
##
## sigma^2 estimated as 2.644e+10: log likelihood=-3124.72
## AIC=6259.45 AICc=6259.71 BIC=6276.7
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taxirides.summary <- taxi.rides %>% arrange(year, month, day) %>% slice(-c(1:4)) %>%
mutate(week.numb = rep(1:234, each = 7)) %>% group_by(week.numb) %>%
summarize(total.rides = sum(n)) %>% select(total.rides) %>% pull()

auto.arima(taxirides.summary)

## Series: taxirides.summary
## ARIMA(3,1,1)
##
## Coefficients:
## ar1 ar2 ar3 ma1
## -0.1069 -0.3432 -0.2949 -0.2583
## s.e. 0.1406 0.0650 0.0812 0.1419
##
## sigma^2 estimated as 2.644e+10: log likelihood=-3124.72
## AIC=6259.45 AICc=6259.71 BIC=6276.7

- The arima function can also be used to fit a specific order of an ARIMA model.

- As we saw before with ARMA models, AR, ARI, IMA, and ARMA models are all special cases of the
ARIMA framework.

#### Seasonal Arima

• ARIMA models can also have a seasonal component, where the lag corresponds to the seasonal frequency.
For example, consider the following model for a time series with weekly seasonal frequency:

xt = αxt−7 + wt

then this model is a seasonal ARIMA(0, 0, 0)(1, 0, 0)7.

library(forecast)
bakery.sales <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/BreadBasket.csv')
pastry.count <- bakery.sales %>% filter(Item %in% c('Pastry','Scandinavian','Medialuna','Muffin','Scone')) %>% group_by(Date) %>% tally() %>% rename(num.pastry = n) %>% select(num.pastry) %>% pull() %>% ts(frequency =7)
ggtsdisplay(pastry.count)
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auto.arima(pastry.count)

## Series: pastry.count
## ARIMA(2,0,2)(1,1,1)[7] with drift
##
## Coefficients:
## ar1 ar2 ma1 ma2 sar1 sma1 drift
## -0.0402 -0.3802 0.3757 0.5374 -0.0920 -0.4636 -0.1164
## s.e. 0.2783 0.3361 0.2300 0.3482 0.1744 0.1618 0.0504
##
## sigma^2 estimated as 40.24: log likelihood=-491.05
## AIC=998.11 AICc=999.12 BIC=1022.25

7


	Modeling Non-Stationary Time Series
	Integrated Model

