STAT 436 / 536 - Lecture 16: Key

Modeling Non-Stationary Time Series

e Many time series models are non-stationary. Recall a time series is stationary if the mean and variance
are constant in time and the autocorrelation only depends on the lag between two time points.

e One of our current strategies for non-stationary time series models is to include a regression component
for trends or seasonal cycles.

e When using a regression model, the interest shifts to the residuals. In particular, the residuals should
satisfy stationarity.

e We also have seen that differencing a random walk results in a stationary series. A random walk can be
written as
Ty = Tg—1 + Wy

and then the differenced series
VTy =Ty — Ty—1 = Wy

just results in white noice, and hence, is stationary.

So why is stationarity important?

- Stationarity is a particular kind of dependence structure, one that enables easier modeling of the sequence of
random variables. Given a stationary sequence, the ARMA suite of tools can be used to model and explain
the dependence structure.

- When stationarity is not present, differencing (as in the random walk), is used to try to obtain a resulting
series that is stationary.



Diagnosing a non-stationary series
e Sometimes a non-stationary series can be diagnosed visually:
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In fact, this is often what we use for residual diagnostics.

e The characteristic equation can be used to determine if a series is stationary, assuming the parameter
values are known.

1
Te = L1 T2 + wy
Lo
ZB - B +1 Ty = W
polyroot(c(1l, -1, .25))
## [1] 2+0i 2-0i
stationary
Ty = Ti—1t+wy
(B — 1) Ty = W

polyroot(c(-1, 1))

## [1] 1+01

non-stationary



1 1
Ty = 53%71 + 5%572 + wy
1 1
(—2B2 — §B + ].) Ty = W

polyroot(c(1l, -.5, -.5))

## [1] 1-0i -2+0i

non-stationary

e One last way to diagnose stationarity is to use a unit root test. This is closely related to the idea of a
random walk as a unit root corresponds to the solution of the polynomial equation of an AR 1 model.

- The arima.sim() function will return an error if you try to simulate a non-stationary model.

arima.sim(n = 100, list(ar = c(1)))

## Error in arima.sim(n = 100, list(ar = c(1))): 'ar' part of model is not stationary

e The Arima and auto.arima can be used to assess for stationary with the a fitted model; however,
there are restrictions in the model that generally result in non-stationary models being fitted (with the
integrated piece).

library(forecast)
#autoplot (WWWusage)
plot(auto.arima(WWWusage, stationary = T))
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- Furthermore, the auto.arima package will also select models that “integrate” the data to create a differenced
series that will be stationary.

auto.arima(WWWusage)

## Series: WWWusage
## ARIMA(1,1,1)

##

## Coefficients:

## arl mal
## 0.6504 0.5256
## s.e. 0.0842 0.0896
##

## sigma”2 estimated as 9.995: log likelihood=-254.15
## AIC=514.3  AICc=514.55 BIC=522.08

Integrated Model

« A model is ‘integrated’ with order d, denoted I(d), if the d" difference of {z;} is white noise.

When d = 1 this is a random walk.

rw <- arima.sim(n=500, list( order = c(0,1,0)))
autoplot (rw)
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auto.arima(rw)

##
##
##
##
##

Series: rw
ARIMA(0,1,0)

sigma”2 estimated as 1.018: log likelihood=-714.03
AIC=1430.06  AICc=1430.07 BIC=1434.27

e The integrated component can also be combined with ARMA models to form an ARIMA.

0,(B)(1 — B)x; = ¢o(B)w;

is an ARIMA(p, d, q) model.

o For instance,

Ty = aTy_1+ Ty — alp_o +wp + Pwyq
Ty — QT 1 —Ty_1+0aTs_g = wp+ Pwp_q
(1—aB)(1 - B)%z, = (1+ BB)w,

is an ARIMA model of order (1,1,1) with an AR parameter of o and an MA parameter of 3.

¢ Recall the taxi data set. Run the code below and discuss the results.

taxi.rides <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/taxi.csv')

taxirides.diff <- taxi.rides %>), arrange(year, month, day) %>% slice(-c(1:4)) %>%

mutate (week.numb = rep(1:234, each = 7)) %>} group_by(week.numb) %>%
summarize(total.rides = sum(n)) %>% select(total.rides) %> pull() %> diff()

auto.arima(taxirides.diff)

##
##
##
##
##
##
##
##
##
##

Series: taxirides.diff
ARIMA(3,0,1) with zero mean

Coefficients:
aril ar2 ar3 mal
-0.1069 -0.3432 -0.2949 -0.2583
s.e. 0.1406 0.0650 0.0812 0.1419

sigma”2 estimated as 2.644e+10: log likelihood=-3124.72
AIC=6259.45  AICc=6259.71  BIC=6276.7



taxirides.summary <- taxi.rides %>J, arrange(year, month, day) %>% slice(-c(1:4)) %>%
mutate (week.numb = rep(1:234, each = 7)) %>} group_by(week.numb) %>%
summarize(total.rides = sum(n)) %>, select(total.rides) %>% pull()
auto.arima(taxirides.summary)

## Series: taxirides.summary
## ARIMA(3,1,1)

##

## Coefficients:

## aril ar2 ar3 mal
## -0.1069 -0.3432 -0.2949 -0.2583
## s.e. 0.1406 0.0650 0.0812 0.1419
##

## sigma”2 estimated as 2.644e+10: log likelihood=-3124.72
## AIC=6259.45  AICc=6259.71 BIC=6276.7

- The arima function can also be used to fit a specific order of an ARIMA model.

- As we saw before with ARMA models, AR, ARI, IMA, and ARMA models are all special cases of the
ARIMA framework.

H##H4+ Seasonal Arima

e ARIMA models can also have a seasonal component, where the lag corresponds to the seasonal frequency.
For example, consider the following model for a time series with weekly seasonal frequency:

Ty = QT¢—7 + Wy

then this model is a seasonal ARTM A(0,0,0)(1,0,0).

library(forecast)

bakery.sales <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/BreadBasket.csv')
pastry.count <- bakery.sales 7>/, filter(Item %inJ, c('Pastry','Scandinavian', 'Medialuna', 'Muffin', 'Scone
ggtsdisplay(pastry.count)
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auto.arima(pastry.count)

## Series: pastry.count
## ARIMA(2,0,2)(1,1,1)[7] with drift

#i#

## Coefficients:

## aril ar2 mal ma2 sarl smal drift
## -0.0402 -0.3802 0.3757 0.5374 -0.0920 -0.4636 -0.1164

## s.e. 0.2783 0.3361 0.2300 0.3482 0.1744 0.1618 0.0504
#i#

## sigma”2 estimated as 40.24: 1log likelihood=-491.05

## AIC=998.11  AICc=999.12 BIC=1022.25
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