
STAT 436 / 536 - Lecture 17
Multivariate Time Series

• Multivariate time series data consist of recordings of multiple variables at the same time.

• For instance, consider the prices of conventional and organic avocados in the western region of the
United States.

avo <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/avocado_west.csv')

ggplot(data = avo, aes(y = AveragePrice, x = Date)) + geom_line(aes(color = type))
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Spurious Regression

• In general, we use regression to assess relationships between a set of variables.

• The textbook has an example about Australian electricity and chocolate production sharing an increasing
trend.

• More generally in time series analyses, spurious regression results when both series share an underlying
stochastic trend.
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• Consider and example with two simulated random walks.
set.seed(10)
x <- rnorm(100)
y <- rnorm(100)

for (i in 2:100){
x[i] <- x[i-1] + rnorm(1)
y[i] <- y[i-1] + rnorm(1)

}

comb <- data.frame(time = rep(1:100,2), val=c(x,y), var = rep(c('x','y'), each = 100))

ggplot(data=comb, aes(y=val, x=time)) + geom_line(aes(color = var))
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cor(x,y)

## [1] 0.9039082

- Each time series is a random walk, but the noise terms are uncorrelated.

- Now consider the correlation between the two differenced time series.
cor(diff(x), diff(y))

## [1] 0.2018941

- The result is much smaller correlation. - Q: how do you anticipate these results changing for a different seed
or a longer time series?
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• With spurious regression, we often see that t or z scores in regression are quite high
• Looking at the residuals can also highlight potential issues with time series regression models.

ggtsdisplay(residuals(lm(y~x)))
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Unit Root Testing

• In addition to the techniques that we have seen for testing for stationarity we can directly look for unit
roots.

• The Dickey-Fuller test is one hypothesis test for assessing whether a unit root exists.

• Note that the alternative hypothesis is that the series is stationary,
adf.test(x)

##
## Augmented Dickey-Fuller Test
##
## data: x
## Dickey-Fuller = -2.2343, Lag order = 4, p-value = 0.4796
## alternative hypothesis: stationary
adf.test(y)

##
## Augmented Dickey-Fuller Test
##
## data: y
## Dickey-Fuller = -2.9218, Lag order = 4, p-value = 0.1948
## alternative hypothesis: stationary

so
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Cointegration

• Two time series can have unit roots and be related.

• Two non-stationary time series {xt} and {yt} are cointegrated

• As an example of cointegrated time series, consider two time series that are generated from a latent
mean process.

latent.mean <- y2 <- x2 <- rep(0, 100)
for (i in 2:500){

latent.mean[i] <- latent.mean[i-1] + rnorm(1)
}
x2 <- latent.mean + rnorm(500)
y2 <- latent.mean + rnorm(500)

coint.df <- data.frame(time = rep(1:500,3), val = c(latent.mean, x2, y2), var = rep(c('latent.mean','x','y'), each = 500))

ggplot(data = coint.df, aes(x = time, y = val)) + geom_line(aes(color = var))
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• The Phillips-Ouliaris test can be used to assess whether two time series are cointegrated.
po.test(cbind(x2,y2))

##
## Phillips-Ouliaris Cointegration Test
##
## data: cbind(x2, y2)
## Phillips-Ouliaris demeaned = -506.95, Truncation lag parameter =
## 4, p-value = 0.01

In this case, we’d reject the null that the two time series are not cointegrated.

Vector Autoregressive Models

• One approach to model multivariate time series is to extend our ARIMA model framework.

• Two time series, {xt} and {yt} follow a vector autoregressive process of order 1 (VAR(1)) if

- Similar to the univariate case, characteristic equations can be defined to assess whether the models are
stationary.

- VAR models can be fit using the ar() or VAR() functions.
VAR(cbind(x2,y2), p = 1)

##
## VAR Estimation Results:
## =======================
##
## Estimated coefficients for equation x2:
## =======================================
## Call:
## x2 = x2.l1 + y2.l1 + const
##
## x2.l1 y2.l1 const
## 0.4158914 0.5583220 -0.1705214
##
##
## Estimated coefficients for equation y2:
## =======================================
## Call:
## y2 = x2.l1 + y2.l1 + const
##
## x2.l1 y2.l1 const
## 0.4634932 0.5201526 -0.1027198
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- The VARselect model can also be used to choose the order of a model based on some criteria.
VARselect(cbind(x2,y2), lag.max = 5, type="const")

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 2 2 2 2
##
## $criteria
## 1 2 3 4 5
## AIC(n) 1.559967 1.505137 1.506841 1.521433 1.533933
## HQ(n) 1.579974 1.538482 1.553524 1.581453 1.607291
## SC(n) 1.610931 1.590078 1.625758 1.674326 1.720802
## FPE(n) 4.758666 4.504777 4.512471 4.578818 4.636443

- The predict(n.ahead =) and resid() functions can be applied to VAR objects.

State-Space approach

• More general multivariate time series models can be fit using a state-space approach.

• The dlm package in R has the capability to fit models of this type.
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