STAT 436 / 536 - Lecture 17: Key

Multivariate Time Series

e Multivariate time series data consist of recordings of multiple variables at the same time.

o For instance, consider the prices of conventional and organic avocados in the western region of the
United States.

avo <- read_csv('http://math.montana.edu/ahoegh/teaching/timeseries/data/avocado_west.csv')

ggplot(data = avo, aes(y = AveragePrice, x = Date)) + geom_line(aes(color = type))
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Spurious Regression

e In general, we use regression to assess relationships between a set of variables. However, we need to be
cautious in a time-series setting.

o The textbook has an example about Australian electricity and chocolate production sharing an increasing
trend. In fact, the two variables have correlation of 0.958. It turns out that the increases in both
variables are largely driven by an increasing Australian population, and hence, the relationship is
deemed spurious.

e More generally in time series analyses, spurious regression results when both series share an underlying
stochastic trend. This often takes the form of a random walk (e.g. a unit root).



e Consider and example with two simulated random walks.

set.seed(10)
x <- rnorm(100)
y <- rnorm(100)

for (i in 2:100){
x[i] <- x[i-1] + rnorm(1)
y[i] <- y[i-1] + rnorm(1)
}
comb <- data.frame(time = rep(1:100,2), val=c(x,y), var = rep(c('x','y'), each = 100))

ggplot(data=comb, aes(y=val, x=time)) + geom_line(aes(color = var))
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cor(x,y)

## [1] 0.9039082

- Each time series is a random walk, but the noise terms are uncorrelated. Despite this, there is a high degree
of correlation between the two time series due to the stochastic trend.

- Now consider the correlation between the two differenced time series.

cor(diff(x), diff(y))

## [1] 0.2018941

- The result is much smaller correlation. - Q: how do you anticipate these results changing for a different seed
or a longer time series?



o With spurious regression, we often see that ¢ or z scores in regression are quite high and sometimes
statistically significant. This is directly related to the high correlation values that we have seen in the
example above.

e Looking at the residuals can also highlight potential issues with time series regression models.

ggtsdisplay(residuals (Im(y~x)))

residuals(Im(y ~ x))
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Unit Root Testing

e In addition to the techniques that we have seen for testing for stationarity we can directly look for unit
roots.

e The Dickey-Fuller test is one hypothesis test for assessing whether a unit root exists. Essentially, for a
model written as x; = axy_1 + wy, the model tests whether = 1 (random-walk non-stationary) or
a < 1 (stationary).

e Note that the alternative hypothesis is that the series is stationary,

adf.test (x)

#i#

## Augmented Dickey-Fuller Test
#i#t

## data: x

## Dickey-Fuller = -2.2343, Lag order = 4, p-value = 0.4796
## alternative hypothesis: stationary

adf .test(y)

##

## Augmented Dickey-Fuller Test
##

## data: vy

## Dickey-Fuller = -2.9218, Lag order = 4, p-value = 0.1948
## alternative hypothesis: stationary

so both of these results would fail to reject the null hypothesis that the series is non-stationary.



Cointegration

e Two time series can have unit roots and be related. This phenemenon is called cointegration.

o Two non-stationary time series {z:} and {y:} are cointegrated if some linear combination ax; + by, is
stationary. Where a and b are constants.

e As an example of cointegrated time series, consider two time series that are generated from a latent
mean process.

latent.mean <- y2 <- x2 <- rep(0, 100)
for (i in 2:500){
latent.mean[i] <- latent.mean[i-1] + rnorm(1)
}
x2 <- latent.mean + rnorm(500)
y2 <- latent.mean + rnorm(500)

coint.df <- data.frame(time = rep(1:500,3), val = c(latent.mean, x2, y2), var = rep(c('latent.mean', 'x

ggplot(data = coint.df, aes(x = time, y = val)) + geom_line(aes(color = var))
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e The Phillips-Ouliaris test can be used to assess whether two time series are cointegrated.

po.test(cbind(x2,y2))

##

## Phillips-Ouliaris Cointegration Test

##

## data: cbind(x2, y2)

## Phillips-Ouliaris demeaned = -506.95, Truncation lag parameter =

## 4, p-value = 0.01

In this case, we’d reject the null that the two time series are not cointegrated.

Vector Autoregressive Models

e One approach to model multivariate time series is to extend our ARIMA model framework.

o Two time series, {z:} and {y:} follow a vector autoregressive process of order 1 (VAR(1)) if

e = Onxi—1+ 002y + Wy

Yt O2124—1 + 022y —1 + Wy ¢,

where {w, +} and {w, ;} are white noise and the ¢ values are model parameters.

e Similar to the univariate case, characteristic equations can be defined to assess whether the models are
stationary.

e VAR models can be fit using the ar() or VAR() functions.
VAR(cbind(x2,y2), p = 1)

#it

## VAR Estimation Results:
#i#
#i#
## Estimated coefficients for equation x2:
#it
## Call:

## x2 = x2.11 + y2.11 + const

##

## x2.11 y2.11 const

## 0.4158914 0.5583220 -0.1705214

#it

#i#

## Estimated coefficients for equation y2:
#i#
## Call:

## y2 = x2.11 + y2.11 + const

#i#

#i# x2.11 y2.11 const
## 0.4634932 0.5201526 -0.1027198




- The VARselect model can also be used to choose the order of a model based on some criteria.

VARselect(cbind(x2,y2), lag.max = 5, type="const")

## $selection
## AIC(n) HQ(n) SC(n) FPE(n)

## 2 2 2 2

##

## $criteria

## 1 2 3 4 5

## AIC(n) 1.559967 1.505137 1.506841 1.521433 1.533933
## HQ(n) 1.579974 1.538482 1.553524 1.581453 1.607291
## SC(n) 1.610931 1.590078 1.625758 1.674326 1.720802
## FPE(n) 4.758666 4.504777 4.512471 4.578818 4.636443

- The predict(n.ahead =) and resid() functions can be applied to VAR objects.

State-Space approach

e More general multivariate time series models can be fit using a state-space approach.

e The dlm package in R has the capability to fit models of this type.
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