STAT 436 / 536 - Lecture 18: Key

Heteroskedastic Variance Models

o Hetoreskedastic variance models account for non-constant variation.

e Recall the airline passenger’s dataset, where the variability in the time series increases in time.

data(AirPassengers)
autoplot (AirPassengers)
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e Another example includes the daily returns from the S & P 500 index. Daily returns are displayed as

100 x log(yi’il ), where y; is the value of the S&P 500 on day t.

e This series exhibits times of increased variability, which is referred to as volatility.

o Time series with periods of increased volatility are referred to as conditional heteroskedastic models.

e What are the implications of conditional heteroskedastic model?



Daily Returns of S & P 500
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e Models with stochastic variability are not stationary, by definition, as the variance changes in time.

e Stochastic Volatility is typically not obvious from an ACF plot alone, but can be visualized with the
squared values of the sequence (that have been de-meaned). why?

ggAct (SP500 - mean(SP500))

Series: SP500 — mean(SP500)
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ggAct ((SP500 - mean(SP500))~2)

Series: (SP500 — mean(SP500))"2
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Modeling Conditional Heteroskedasticity

e A model that accounts for changing variance is necessary for this situation and a common way to do
this is to use an autoregressive process.

o Let {e:} be a first-order autoregressive conditional heteroskedastic (ARCH(1)), where {w;} is white
noise with zero mean and variance of 1, then

€ = Wiy /o + 1€z,

e The variance of ¢; can be calculated as:

Var(e;) = E(e2)— E(e)?
E(w})E(ag + a16;_;)
E(ap + ar€r_y)

oo+ a1Var(e_q)

e« ARCH models should be applied to an uncorrelated series with no trends or seasonal components.
Hence, we need to control for ARIMA type procedures first.



e ARCH models can also include p-th order lags, where

P
E : 2

Qg + Qi€p_;
i=1

o Furthermore, a more flexible model known as Generalized ARCH or GARCH(p,q) model can be specified.
First, define €; = wv/hy, then

D 1
ht =g + ZO@E?_,L- + Zﬂjht_j
i=1 j=1

Simulating GARCH Models

e To demonstrate the structure of GARCH models and the impacts of « and 3, consider the following
simulation.

set.seed(12042018)
alphaO <- .1
alphal <- .9
betal <- 0

num.pts <- 1000

w <- rnorm(num.pts)
eps <- rep(0, num.pts)
h <- rep(0, num.pts)

for (time.pt in 2:num.pts){
h[time.pt] <- alphaO + alphal * (eps[time.pt - 1]72) + betal * h[time.pt - 1]
eps[time.pt] <- wltime.pt] * sqrt(h[time.pt])

}

plot(eps, type = 'l')
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acf (eps)
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- Modify the values for ag, a1, and 1 to assess the impacts of these parameters.



Fitting GARCH Models

e The garch() function in the tseries package can be used to fit GARCH models.

gl <- garch(SP500, trace = F, grad = 'numerical')
gl

##

## Call:

## garch(x = SP500, trace = F, grad = "numerical")
##

## Coefficient(s):

## a0 al b1

## 0.004292 0.050041 0.946785

confint(gl)

## 2.5 % 97.5 %

## a0 0.002171893 0.006411307

## al 0.041262969 0.058819194

## bl 0.937377728 0.956191732

g2 <- garch(eps, trace = F, grad = 'numerical')
g2

##

## Call:

## garch(x = eps, trace = F, grad = "numerical")
##

## Coefficient(s):

## a0 al b1

## 3.323e-01 2.110e-01 1.432e-12

confint (g2)

## 2.5 % 97.5 %

## a0 0.28030034 0.38436748

##
##

al 0.17021501 0.25180369
bl -0.05398036 0.05398036

e The rugarch package in R contains the functionality to specify the mean structure of the model, with
covariates, and fit a GARCH model to the error terms.

o GARCH models do not influence the mean prediction (point estimate) in most situations, but do impact
the width of the prediction intervals.

State Space Models

e Recall, the generic state space model formulation.

ye = Fiaxg+og

ze = Gry—q + wy,

where, in particular, v; ~ N(0,V;). Hence, the model can naturally handle heteroskedasticity.
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