
STAT 436 / 536 - Lecture 18: Key
Heteroskedastic Variance Models

• Hetoreskedastic variance models account for non-constant variation.

• Recall the airline passenger’s dataset, where the variability in the time series increases in time.
data(AirPassengers)
autoplot(AirPassengers)
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• Another example includes the daily returns from the S & P 500 index. Daily returns are displayed as
100× log( yt

yt−1
), where yt is the value of the S&P 500 on day t.

• This series exhibits times of increased variability, which is referred to as volatility.

• Time series with periods of increased volatility are referred to as conditional heteroskedastic models.

• What are the implications of conditional heteroskedastic model?
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Daily Returns of S & P 500

• Models with stochastic variability are not stationary, by definition, as the variance changes in time.

• Stochastic Volatility is typically not obvious from an ACF plot alone, but can be visualized with the
squared values of the sequence (that have been de-meaned). why?

ggAcf(SP500 - mean(SP500))
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ggAcf((SP500 - mean(SP500))^2)
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Modeling Conditional Heteroskedasticity

• A model that accounts for changing variance is necessary for this situation and a common way to do
this is to use an autoregressive process.

• Let {εt} be a first-order autoregressive conditional heteroskedastic (ARCH(1)), where {wt} is white
noise with zero mean and variance of 1, then

εt = wt

√
α0 + α1ε2t−1

• The variance of εt can be calculated as:

V ar(εt) = E(ε2t )− E(εt)2

= E(w2
t )E(α0 + α1ε

2
t−1)

= E(α0 + α1ε
2
t−1)

= α0 + α1V ar(εt−1)

• ARCH models should be applied to an uncorrelated series with no trends or seasonal components.
Hence, we need to control for ARIMA type procedures first.
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• ARCH models can also include p-th order lags, where

εt = wt

√√√√α0 +
p∑

i=1
αiε2t−i

• Furthermore, a more flexible model known as Generalized ARCH or GARCH(p,q) model can be specified.
First, define εt = wt

√
ht, then

ht = α0 +
p∑

i=1
αiε

2
t−i +

1∑
j=1

βjht−j

Simulating GARCH Models

• To demonstrate the structure of GARCH models and the impacts of α and β, consider the following
simulation.

set.seed(12042018)
alpha0 <- .1
alpha1 <- .9
beta1 <- 0

num.pts <- 1000

w <- rnorm(num.pts)
eps <- rep(0, num.pts)
h <- rep(0, num.pts)

for (time.pt in 2:num.pts){
h[time.pt] <- alpha0 + alpha1 * (eps[time.pt - 1]^2) + beta1 * h[time.pt - 1]
eps[time.pt] <- w[time.pt] * sqrt(h[time.pt])

}
plot(eps, type = 'l')
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acf(eps)
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- Modify the values for α0, α1, and β1 to assess the impacts of these parameters.
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Fitting GARCH Models

• The garch() function in the tseries package can be used to fit GARCH models.

g1 <- garch(SP500, trace = F, grad = 'numerical')
g1

##
## Call:
## garch(x = SP500, trace = F, grad = "numerical")
##
## Coefficient(s):
## a0 a1 b1
## 0.004292 0.050041 0.946785
confint(g1)

## 2.5 % 97.5 %
## a0 0.002171893 0.006411307
## a1 0.041262969 0.058819194
## b1 0.937377728 0.956191732
g2 <- garch(eps, trace = F, grad = 'numerical')
g2

##
## Call:
## garch(x = eps, trace = F, grad = "numerical")
##
## Coefficient(s):
## a0 a1 b1
## 3.323e-01 2.110e-01 1.432e-12
confint(g2)

## 2.5 % 97.5 %
## a0 0.28030034 0.38436748
## a1 0.17021501 0.25180369
## b1 -0.05398036 0.05398036

• The rugarch package in R contains the functionality to specify the mean structure of the model, with
covariates, and fit a GARCH model to the error terms.

• GARCH models do not influence the mean prediction (point estimate) in most situations, but do impact
the width of the prediction intervals.

State Space Models

• Recall, the generic state space model formulation.

yt = Ftxt + vt

xt = Gtxt−1 + wt,

where, in particular, vt ∼ N(0, Vt). Hence, the model can naturally handle heteroskedasticity.
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