
STAT 436 / 536 - Lecture 3
September 5, 2018

Time Series Decomposition - Visually

library(datasets)
library(ggplot2)
library(ggfortify)
data(AirPassengers)
autoplot(AirPassengers) + ylim(0,650) +

labs(title="Monthly Airline Passenger Count", y="Number of Passengers(thousands)", x= 'Year')

0

200

400

600

1950 1955 1960

Year

N
um

be
r 

of
 P

as
se

ng
er

s(
th

ou
sa

nd
s)

Monthly Airline Passenger Count

autoplot(aggregate(AirPassengers)) + ylim(0,6000) +
labs(title="Annual Airline Passenger Count", y="Number of Passengers(thousands)", x= 'Year')
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boxplot(AirPassengers ~ cycle(AirPassengers), ylim = c(0,700), xlab = 'Month',
ylab = "Number of Passengers(thousands)", main ="Monthly Airline Passenger Count")
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Exercise: Mauna Loa CO2 Observations

Using the Mauna Loa dataset, create three figures: 1.) the complete time series, 2.) annual decomposition,
and 3.) monthly series. Think carefully about the appropriate scale for the y-axis of these plots.
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Time Series Decomposition - Modeling and Notation

Time Series Mathematical Notation

• Let {xt} = {x1, . . . , xT } be a time series of length T .

• A time series is a sequence of random variables and the observed time series is one realization of this
process. Unlike some other settings, the same notation is typically used for the random variables and
observed values.

• The hat notation will often be used for prediction, x̂t+k|1:t, meaning the observation at time t + k, given
observations up to time t.

• For those of you familiar with Bayesian notation, we will use p(xt+k|x1:t) to represent the distribution
at time t + k given observations from time 1 to time t.

Time Series Models

• We have seen how to visually decompose a time series into an annual trend and a seasonal pattern. So
this additive model could be written as:

xt = mt + st

where mt is the trend and st is the seasonal pattern.

• What is missing from the previous model? the error term: z_t.

xt = mt + st + zt

• Question: how should we think about estimating a trend?
– One option is a moving average centered at xt, but the question is how many observations are

necessary? Make sure that the moving average is sufficiently long to smooth out the seasonal
effects.

– With monthly data this can be written as:

m̂t = 1/2xt−6 + xt−5 + . . . xt + . . . xt+5 + 1/2xt+6
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• Question: Now how about the seasonal effect?
• The seasonal effect for time t can be estimated by subtracting the trend line.

st = xt −mt

• Then the overall seasonal effect s̄ is the average of the seasonal components in that seasonal cycle.

• This procedure results in a smoothed estimate of the time series.

• A “seasonally adjusted” time series can also be produced that removes the seasonal patterns.

xt − s̄

• With an ts object in R, the decompose() function will automatically do this procedure.
decompose(AirPassengers)
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