# STAT 436 / 536 - Lecture 4

September 10, 2018

#### 1. Correlation Structure and Motivation

• We have seen how to decompose a time series model to remove a trend and seasonal components. So what remains?

\_

#### 2. Expectation, Variance, and Auto Correlation

- The expected value, or expectation, or a random variable is defined as:
- In the context of annual measurements of Nile River flows, what is an interpretation of the expectation?
- A times series model is stationary in the mean if:
- What is  $E[(x \mu_x)(y \mu_y)]$ ?

|  | Sample | Based | Moments |
|--|--------|-------|---------|
|--|--------|-------|---------|

| • Sample based calculations can be made in R mean using mean(x), variance var(x), covariance cov(x,y), and correlation cor(x,y).                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                             |
| • Using a dataset containing information on housing sales in King County, WA http://math.montana.edu/ahoegh/teaching/stat408/datasets/SeattleHousing.csv, compute the following quantities: |
| Seattle <- read.csv('http://math.montana.edu/ahoegh/teaching/stat408/datasets/SeattleHousing.csv'                                                                                           |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| - mean sales price                                                                                                                                                                          |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| - standard deviation of sales price                                                                                                                                                         |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| - correlation between sales price and square footage (sqft_living)                                                                                                                          |
| • Interret the three quantities above.                                                                                                                                                      |

# 3. Autocorrelation and the Correlogram

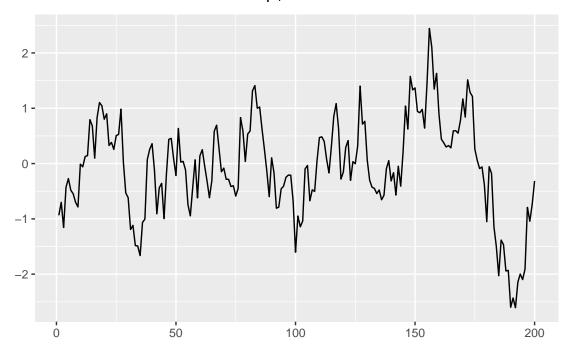
| • In addition to mean and variance, the serial correlation time series modeling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (or autocorrelation) is an important element in |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| • Autocovariance is defined as:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| • A time series model is second-order stationary if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| • The autocorrelation function is defined as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| <ul> <li>Similar to variance calculations, the sample autocovar computed:</li> <li>sample acvf:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ariance and autocorrelation functions can be    |
| • sample acf:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
| • Note these properties require a stationary process, hence when considering correlated random noise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trends and cyclical patterns need to be removed |
| Simulating Correlated Time Series Data  • As was mentioned earlier in class, we can think of time Specifically, there is a specific correlation structure defined to the structure of the structu | ~                                               |

• First construct a covariance matrix between all of the observations.

```
set.seed(09062018)
time.pts <- 200
auto.corr <- 0.9
evolution.matrix <- diag(time.pts)
for (column in 1:time.pts){
   evolution.matrix[,column] <- auto.corr ^ abs((1:time.pts) - column)
}
library(knitr) # for kable
kable(evolution.matrix[1:5,1:5],caption = "Covariance matrix for first 5 time points")</pre>
```

Table 1: Covariance matrix for first 5 time points

| 1.0000 | 0.900 | 0.81 | 0.729 | 0.6561 |
|--------|-------|------|-------|--------|
| 0.9000 | 1.000 | 0.90 | 0.810 | 0.7290 |
| 0.8100 | 0.900 | 1.00 | 0.900 | 0.8100 |
| 0.7290 | 0.810 | 0.90 | 1.000 | 0.9000 |
| 0.6561 | 0.729 | 0.81 | 0.900 | 1.0000 |

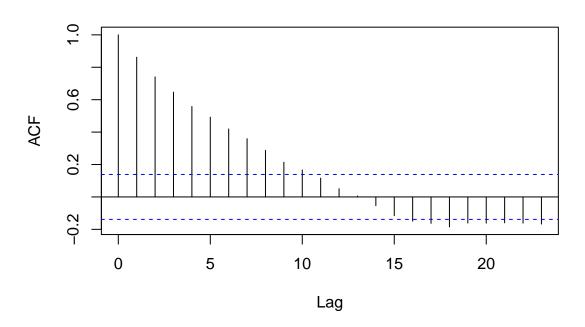

- Simulate a vector of correlated normal random variables.

```
library(mnormt) # for rmnorm
Y <- as.ts(rmnorm(n=1, mean=0, varcov=evolution.matrix))</pre>
```

- Create time series figure

```
library(ggfortify) # for autoplot
autoplot(Y) + ggtitle(expression(paste('Simulated Time Series where ', rho[1], '= 0.9')))
```

## Simulated Time Series where $\rho_1$ = 0.9




Exercises: 1. Is the simulated time series stationary in the mean, why or why not? 2. What is  $\gamma_k$  + 3. What is  $\rho_k =$ 4. Change the auto.corr variable, rerun the simulation and describe how your figures are different. a. auto.corr = 0b. auto.corr = .5 c. auto.corr = -.95.(536) Adapt the code to include a trend and seasonal cycle in addition to the serial correlated random innovations.

• A useful tool for identifying autocorrelation structure in a time series dataset is the correlogram. The command for this in R is acf().

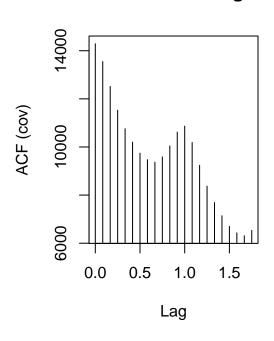
acf(Y)

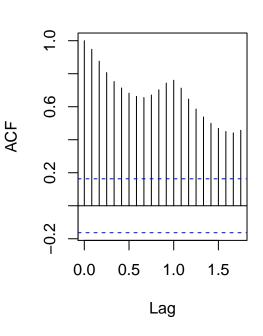
### Series Y



- Correlograms have the following properties:
- The \vfill
- The lag O autocorrelation is always 1 and is include for comparison purposes. \vfill
- If  $\rho_k$  = 0, then the sampling distribution of  $r_k$  is (approximately) normal with mean -1/n and
  - It is important to have a stationary time series that does not include deterministic signals, such as a trend or cycle.

#### Airline Passenger Example Section 2.3.2


Load Data and Decompose Time Series

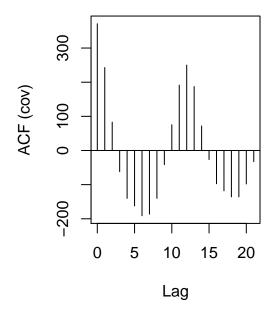

```
data("AirPassengers")
AP.decomp <- decompose(AirPassengers, 'additive')
str(AP.decomp)
## List of 6
              : Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
##
   $ seasonal: Time-Series [1:144] from 1949 to 1961: -24.75 -36.19 -2.24 -8.04 -4.51 ...
   $ trend
              : Time-Series [1:144] from 1949 to 1961: NA NA NA NA NA ...
   $ random : Time-Series [1:144] from 1949 to 1961: NA NA NA NA NA ...
             : num [1:12] -24.75 -36.19 -2.24 -8.04 -4.51 ...
   $ figure
##
   $ type
              : chr "additive"
   - attr(*, "class")= chr "decomposed.ts"
```

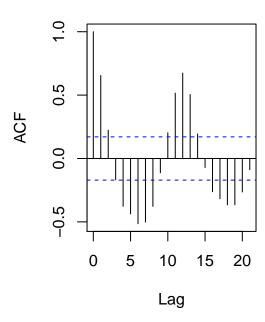
```
par(mfcol=(c(1,2)))
acf(AirPassengers, type = 'covariance'); acf(AirPassengers)
```

# Series AirPassengers

# Series AirPassengers







ACF Plot on Decomposed Random Component (Covariance)

```
#exclude NA's
random.AP <- AP.decomp$random[!is.na(AP.decomp$random)]
par(mfcol=(c(1,2)))
acf(random.AP, type='covariance'); acf(random.AP)</pre>
```

# Series random.AP

# Series random.AP



