
STAT 436 / 536 - Lecture 4
September 10, 2018

1. Correlation Structure and Motivation

• We have seen how to decompose a time series model to remove a trend and seasonal components. So
what remains?

– The random component

– After removing the trend and seasonal components, do we expect the consecutive random components
to be similar, in other words will they be correlated?

– Yes, most likely autocorrelation is still present.

2. Expectation, Variance, and Auto Correlation

• The expected value, or expectation, or a random variable is defined as: E[(x)] =
∫
xf(x)dx.

• In the context of annual measurements of Nile River flows, what is an interpretation of the expectation?
average flow

• A times series model is stationary in the mean if: the mean function is constant in time.

• What is E[(x− µx)(y − µy)]? -This is known as covariance and is a more general form of variance:
E[(x− µx)2]

-What is the relationship between covariance and correlation? correlation = E[(x−µx)(y−µy)]
σxσy
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Sample Based Moments

• Sample based calculations can be made in R mean using mean(x), variance var(x), covariance cov(x,y),
and correlation cor(x,y).

• Using a dataset containing information on housing sales in King County, WA http://math.montana.
edu/ahoegh/teaching/stat408/datasets/SeattleHousing.csv, compute the following quantities:

Seattle <- read.csv('http://math.montana.edu/ahoegh/teaching/stat408/datasets/SeattleHousing.csv')

- mean sales price (price)
signif(mean(Seattle$price), 3)

## [1] 633000

- standard deviation of sales price
signif(sd(Seattle$price), 3)

## [1] 635000

- correlation between sales price and square footage (sqft_living)
round(cor(Seattle$price, Seattle$sqft_living),2)

## [1] 0.78

• Intepret the three quantities above.
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3. Autocorrelation and the Correlogram

• In addition to mean and variance, the serial correlation (or autocorrelation) is an important element in
time series modeling.

• Autocovariance is defined as: γk = E[(xt − µt)(xt+k − µ[t+ k])].

• A time series model is second-order stationary if the correlation between time steps only depends on the
number of time points between them.

• The autocorrelation function is defined as ρk = γk

σ2

• Similar to variance calculations, the sample autocovariance and autocorrelation functions can be
computed:

• sample acvf: ck = 1
n

∑n−k
t=1 (xt − x̄)(xt+k − barx). Note n is used in the denominator.

• sample acf: rk = ck

c0
.

• Note these properties require a stationary process, hence trends and cyclical patterns need to be removed
when considering correlated random noise.

Simulating Correlated Time Series Data

• As was mentioned earlier in class, we can think of time series modeling as similar to mixed models.
Specifically, there is a specific correlation structure defined for each type of model.
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• First construct a covariance matrix between all of the observations.
set.seed(09062018)
time.pts <- 200
auto.corr <- 0.9
evolution.matrix <- diag(time.pts)
for (column in 1:time.pts){

evolution.matrix[,column] <- auto.corr ^ abs((1:time.pts) - column)
}
library(knitr) # for kable
kable(evolution.matrix[1:5,1:5],caption = "Covariance matrix for first 5 time points")

Table 1: Covariance matrix for first 5 time points

1.0000 0.900 0.81 0.729 0.6561
0.9000 1.000 0.90 0.810 0.7290
0.8100 0.900 1.00 0.900 0.8100
0.7290 0.810 0.90 1.000 0.9000
0.6561 0.729 0.81 0.900 1.0000

- Simulate a vector of correlated normal random variables.
library(mnormt) # for rmnorm
Y <- as.ts(rmnorm(n=1, mean=0, varcov=evolution.matrix))

- Create time series figure
library(ggfortify) # for autoplot
autoplot(Y) + ggtitle(expression(paste('Simulated Time Series where ', rho[1], '= 0.9')))
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Exercises:

1. Is the simulated time series stationary in the mean, why or why not?

2. What is γk +

3. What is ρk =

4. Change the auto.corr variable, rerun the simulation and describe how your figures are different.

a. auto.corr = 0

b. auto.corr = .5

c. auto.corr = -.9

5.(536) Adapt the code to include a trend and seasonal cycle in addition to the serial correlated random
innovations.
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• A useful tool for identifying autocorrelation structure in a time series dataset is the correlogram. The
command for this in R is acf().

acf(Y)
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- Correlograms have the following properties: - The x-axis gives lag(k) and the y-axis gives the autocorrelation.

- The lag 0 autocorrelation is always 1 and is include for comparison purposes.

- If ρk = 0, then the sampling distribution of rk is (approximately) normal with mean -1/n and variance of
1/n. The dotted lines are drawn on the correlogram at − 1

n ± 2√
n
.

- It is important to have a stationary time series that does not include deterministic signals, such as a trend
or cycle.

Airline Passenger Example Section 2.3.2

Load Data and Decompose Time Series
data("AirPassengers")
AP.decomp <- decompose(AirPassengers, 'additive')
str(AP.decomp)

## List of 6
## $ x : Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 148 148 136 119 ...
## $ seasonal: Time-Series [1:144] from 1949 to 1961: -24.75 -36.19 -2.24 -8.04 -4.51 ...
## $ trend : Time-Series [1:144] from 1949 to 1961: NA NA NA NA NA ...
## $ random : Time-Series [1:144] from 1949 to 1961: NA NA NA NA NA ...
## $ figure : num [1:12] -24.75 -36.19 -2.24 -8.04 -4.51 ...
## $ type : chr "additive"
## - attr(*, "class")= chr "decomposed.ts"
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ACF Plot with Air Passengers Data (Covariance)
par(mfcol=(c(1,2)))
acf(AirPassengers, type = 'covariance')
acf(AirPassengers)
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ACF Plot on Decomposed Random Component (Covariance)
#exclude NA's
random.AP <- AP.decomp$random[!is.na(AP.decomp$random)]
par(mfcol=(c(1,2)))
acf(random.AP, type='covariance')
acf(random.AP)
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