
STAT 436 / 536 - Lecture 6
September 19, 2018

Forecasting Strategies - Exponential Smoothing

Often with time series data, our objective is to make future predictions of a time series. Formally we are
interested in a response at time t+ k, xt+k, given that we have observed the time series up to time point t,
{x1, . . . , xt}.

- Assume our process contains no systematic trend or seasonal effects, or that they have been removed.

-

• This type of model can be displayed
set.seed(09142018)
mu.evol.sd <- .5
sigma <- 1
time.pts <- 100
mu <- rep(0,time.pts)
x <- rep(0, time.pts)

for (t in 2:time.pts){
mu[t] <- mu[t-1] + rnorm(1,mean=0, sd=mu.evol.sd)
x[t] <- mu[t] + rnorm(1, mean=0, sd=sigma)

}

ts.df <- data.frame(mu=mu, x=x, time = 1:time.pts)
library(ggplot2)
ggplot(data=ts.df) + geom_line(aes(x = time, y = mu), color = "red") + geom_point(aes(x=time, y=x)) + ylab('') + ggtitle('Simulated Time Series') + labs(caption = "latent mean shown in red and observed points in black")
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• Explore the impact of changing mu.evol.sd and sigma in the code above. What are the impacts of
these two terms?

• How might these two impact our idea on the next prediction?

Forecasting

• – Interpret this estimator, what do we make of α?

– Does this estimator seem reasonable, yes or no?

– How would α be influenced by the ratio of mu.evol.sd and sigma?

• Given that there are no seasonal effects or trends, what is the prediction for x̂t+k = µ̂t+k?

• We can rewrite the model in a recursive manner, so that:

µ̂t = α(xt − µ̂t−1) + µ̂tt − 1

and then
µ̂t = αxt + α(1− α)xt−1 + α(1− α)2xt−2 . . .

• Typically

•

• So we still need to select α, how should we do this?

– what would be the optimal value of α if µt+1 = µt∀t 1/t

– what about if the change in µ from time to time is much larger than the variance associated with
ωt? Then α should be closer to 1
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• The book suggest a default value of α =

• Let et be the one step ahead prediction error, et = xt − x̂t = xt − x̂t. Then α can be estimated by
minimizing the sum of squared one step ahead prediction error (SS1PE) in a similar fashion to a
regression estimate.

•

Air Quality

• Recall the air quality measurements taken in Bozeman

air.quality <- scrape_BZNPM_AUG(1:15)
aq <- ts(air.quality$conc, freq = 24, start = 1)
library(ggfortify)
autoplot(aq) + ggtitle(label = 'PM2.5 Measurements in Bozeman, MT for August 1:15, 2018',

subtitle = 'Source: MT DEQ') + ylab('µg/m3') + xlab('Day')
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• There is not clear evidence of cycles or trends in this data set, so we will fit a model without them.
aq.hw <- HoltWinters(aq, beta=FALSE, gamma = FALSE, seasonal = 'additive')
alpha.est <- aq.hw$alpha
aq.pred <- predict(aq.hw, n.ahead = 24, prediction.interval = T)
plot(aq.hw, aq.pred)
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- The α term is estimated to be 0.305.

Holt-Winters Method

- More generally the Holt-Winters method

- Furthermore, these models can be expressed from an additive or multiplicative perspective.

- To express this in an additive framework (3.21 in text)

- In this framework the forecasting equation can be written as

x̂n+k|n = an + kbn + sn+k−p

where we are making predictions at time n for time n+ k and p is the length of the seasonal cycle.
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- Consider the airline passenger data and a multiplicative decomposition.
data("AirPassengers")
AP.hw <- HoltWinters(AirPassengers, seasonal = 'mult')
AP.pred <- predict(AP.hw, n.ahead = 48, prediction.interval = T)
plot(AP.hw,AP.pred)
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- How do we feel about the prediction here?

- What about if this model was used to predict all the way to today?
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