
STAT 436 / 536 - Lecture 6
September 19, 2018

Forecasting Strategies - Exponential Smoothing

Often with time series data, our objective is to make future predictions of a time series. Formally we are
interested in a response at time t+ k, xt+k, given that we have observed the time series up to time point t,
{x1, . . . , xt}.

- Assume our process contains no systematic trend or seasonal effects, or that they have been removed.

- We let the mean of the process change from one time point to the next, but without specifying the direction
of the changes. Formally,

xt = µt + ωt,

where µt is a non-stationary mean and ωt are independent random deviations, often distributed as N(0, σ2).

• This type of model can be displayed
set.seed(09142018)
mu.evol.sd <- .5
sigma <- 1
time.pts <- 100
mu <- rep(0,time.pts)
x <- rep(0, time.pts)

for (t in 2:time.pts){
mu[t] <- mu[t-1] + rnorm(1,mean=0, sd=mu.evol.sd)
x[t] <- mu[t] + rnorm(1, mean=0, sd=sigma)

}

ts.df <- data.frame(mu=mu, x=x, time = 1:time.pts)
library(ggplot2)
ggplot(data=ts.df) + geom_line(aes(x = time, y = mu), color = "red") + geom_point(aes(x=time, y=x)) + ylab('') + ggtitle('Simulated Time Series') + labs(caption = "latent mean shown in red and observed points in black")
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• Explore the impact of changing mu.evol.sd and sigma in the code above. What are the impacts of
these two terms?

• How might these two impact our idea on the next prediction?

Forecasting

• Assuming that no trend is present, consider the following estimate for µ

µ̂t = αxt + (1− α)µ̂t−1

– Interpret this estimator, what do we make of α?

– Does this estimator seem reasonable, yes or no?

– How would α be influenced by the ratio of mu.evol.sd and sigma?

• Given that there are no seasonal effects or trends, what is the prediction for x̂t+k = m̂ut+k?

• We can rewrite the model in a recursive manner, so that:

µ̂t = α(xt − µ̂t−1) + µ̂tt − 1

and then
µ̂t = αxt + α(1− α)xt−1 + α(1− α)2xt−2 . . .

• Typically µ̂1 = x1.

• The µ̂t is the exponentially weighted moving average and α is the smoothing parameter.

• So we still need to select α, how should we do this?

– what would be the optimal value of α if µt+1 = µt∀t 1/t

– what about if the change in µ from time to time is much larger than the variance associated with
ωt? Then α should be closer to 1
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• The book suggest a default value of α = .2 is reasonable, but also defines a method for estimating α.

• Let et be the one step ahead prediction error, et = xt − x̂t = xt − x̂t. Then α can be estimated by
minimizing the sum of squared one step ahead prediction error (SS1PE) in a similar fashion to a
regression estimate.

• This exponential weighted moving average is a special case of the Holt-Winters method.

Air Quality

• Recall the air quality measurements taken in Bozeman

air.quality <- scrape_BZNPM_AUG(1:15)
aq <- ts(air.quality$conc, freq = 24, start = 1)
library(ggfortify)
autoplot(aq) + ggtitle(label = 'PM2.5 Measurements in Bozeman, MT for August 1:15, 2018',

subtitle = 'Source: MT DEQ') + ylab('µg/m3') + xlab('Day')

0

20

40

60

4 8 12 16

Day

µg
/m

3

Source: MT DEQ

PM2.5 Measurements in Bozeman, MT for August 1:15, 2018

3



• There is not clear evidence of cycles or trends in this data set, so we will fit a model without them.
aq.hw <- HoltWinters(aq, beta=FALSE, gamma = FALSE, seasonal = 'additive')
alpha.est <- aq.hw$alpha
aq.pred <- predict(aq.hw, n.ahead = 24, prediction.interval = T)
plot(aq.hw, aq.pred)
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- The α term is estimated to be 0.305.

Holt-Winters Method

- More generally the Holt-Winters method can use exponentially weighted averages to update the mean, or
level (which we have already seen); the slope; and the seasonal components.

- Furthermore, these models can be expressed from an additive or multiplicative perspective.

- To express this in an additive framework (3.21 in text) consider

at = α(xt − st−p) + (1− α)(at−1 + bt−1) (1)
bt = β(at − at−1) + (1− β)bt−1 (2)
st = γ(xt − at) + (1− γ)st−p (3)

where at, bt, and st are the estimated level, slope, and seasonal components. The associated smoothing
parameters are α, β, and γ. In the previous example at was defined as µ̂t.

- In this framework the forecasting equation can be written as

x̂n+k|n = an + kbn + sn+k−p

where we are making predictions at time n for time n+ k and p is the length of the seasonal cycle.
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- Consider the airline passenger data and a multiplicative decomposition.
data("AirPassengers")
AP.hw <- HoltWinters(AirPassengers, seasonal = 'mult')
AP.pred <- predict(AP.hw, n.ahead = 48, prediction.interval = T)
plot(AP.hw,AP.pred)
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- How do we feel about the prediction here?

- What about if this model was used to predict all the way to today?
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