
STAT 436 / 536 - Lecture 7: Key
September 26, 2018

Stochastic Models

• Thus far we have seen two approaches for estimating a time series.
1. The decompose function estimates the trend and seasonal patterns for a time series.

2. The HoltWinters function uses exponentially weighted averages to estimate the mean, trend, and
seasonal components.

• When fitting time series models, most of the deterministic features of the time series can be captured
in various ways, but regardless of the approach, we still have a

• Sometimes the deterministic features capture the time series behavior, so that the residual error series is

• Otherwise, if the residual error series contains

White Noise

• If the time series model is defined for value y, then the residual time series can be defined as:

• A time series exhibits white noise if xt = wt, where wt are

set.seed(09192018)
library(dplyr)
library(ggfortify)
rnorm(100) %>% as.ts() %>% autoplot() + ggtitle('White Noise')

−2

−1

0

1

2

0 25 50 75 100

White Noise

1

-The second order properties for white noise are: the mean term

- the covariance γk(wt, wt+k) = 0

- the correlation ρk(wt, wt+k) = 0

- Q: will the sample correlation necessarily be zero from a simulation?

w <- ts(rnorm(100))
acf.obj <- acf(w)
acf.obj

- When fitting this model, what parameters would we need to estimate?

2

Random Walks

• Let {xt} be a time series object, then this is a random walk if. . .

• Using back substitution, this series can be written as:

• The textbook defines B

• The second order properties of the random walk are µx = 0 and γk(t) = tσ2 (Note this is on HW4).

• The autocorrelation ρk(t) = 1√
1+k/t

• Note this results in a non-stationary time series as the covariance depends on t.

• A common approach with a non-stationary time series, such as a random walk, is to take the difference
between consecutive time points. This is denoted as

• Q: what is the resulting time series after applying the differencing operator to a random walk time
series {xt}?

• Sketch out pseudocode to simulate a random walk.

3

time.pts <- 100
random.walk <- rep(0,time.pts)
sigma.w <- 1
for (t in 2:time.pts){

random.walk[t] <- random.walk[t-1] + rnorm(sigma.w)
}
random.walk %>% as.ts() %>% autoplot() + ggtitle('Simulated Random Walk')

−8

−4

0

4

0 25 50 75 100

Simulated Random Walk

- ACF plots for random walk and differenced random walk.
par(mfcol=c(1,2))
acf(random.walk); acf(diff(random.walk))

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series random.walk

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series diff(random.walk)

4

• In some situations, a purely random walk model may not be appropriate. Consider the following figure.

0

20

40

0 25 50 75 100

Simulated Random Walk?

- This is a random walk

- The

drift.est <- random.walk.drift %>% diff() %>% mean() %>% round(digits = 2)

where the estimate of δ is 0.56.

- The Holt-Winters function can be used to estimate both of these time series data sets.

Random Walk
HW.rw <- HoltWinters(random.walk, gamma = FALSE, beta = FALSE)
HW.rw$alpha

[1] 0.9999428
random.walk[time.pts]

[1] 0.4902215

5

rw.pred <- predict(HW.rw, n.ahead = 5, prediction.interval = T);
rw.pred
plot(HW.rw, rw.pred)

Random Walk with Drift
HW.rw.drift <- HoltWinters(random.walk.drift, gamma = FALSE)
HW.rw.drift$alpha; HW.rw.drift$coefficients['b']

alpha
0.9940048

b
1.102261
rw.drift.pred <- predict(HW.rw.drift, n.ahead = 5, prediction.interval = T)
rw.drift.pred

Time Series:
Start = 101
End = 105
Frequency = 1
fit upr lwr
101 56.23373 58.26129 54.20618
102 57.33599 60.33236 54.33963
103 58.43826 62.27540 54.60111
104 59.54052 64.16870 54.91233
105 60.64278 66.04096 55.24460
plot(HW.rw.drift, rw.drift.pred)

Holt−Winters filtering

Time

O
bs

er
ve

d
/ F

itt
ed

0 20 40 60 80 100

0
20

50

6

	Stochastic Models

