STAT 436 / 536 - Lecture 7: Key

September 26, 2018

Stochastic Models

Thus far we have seen two approaches for estimating a time series.
1. The decompose function estimates the trend and seasonal patterns for a time series.

2. The HoltWinters function uses exponentially weighted averages to estimate the mean, trend, and
seasonal components.

When fitting time series models, most of the deterministic features of the time series can be captured
in various ways, but regardless of the approach, we still have a

e Sometimes the deterministic features capture the time series behavior, so that the residual error series is

e Otherwise, if the residual error series contains

White Noise

o If the time series model is defined for value y, then the residual time series can be defined as:

o A time series exhibits white noise if x; = w;, where w; are

set.seed(09192018)

library(dplyr)

library(ggfortify)

rnorm(100) %>% as.ts() %>% autoplot() + ggtitle('White Noise')

White Noise

0 25 50 75 100

-The second order properties for white noise are: the mean term

- the covariance i (wy, wiyr) =0

- the correlation pg(ws, wipr) =0

- Q: will the sample correlation necessarily be zero from a simulation?

w <- ts(rnorm(100))
acf.obj <- acf(w)
acf.obj

- When fitting this model, what parameters would we need to estimate?

Random Walks

o Let {z:} be a time series object, then this is a random walk if. ..

e Using back substitution, this series can be written as:

e The textbook defines B

o The second order properties of the random walk are i, = 0 and v, (t) = to? (Note this is on HW4).

o The autocorrelation pg(t) = \/1-1',-T/t

e Note this results in a non-stationary time series as the covariance depends on t.

e A common approach with a non-stationary time series, such as a random walk, is to take the difference
between consecutive time points. This is denoted as

e Q: what is the resulting time series after applying the differencing operator to a random walk time
series {z;}?

e Sketch out pseudocode to simulate a random walk.

time.pts <- 100
random.walk <- rep(0,time.pts)
sigma.w <- 1
for (t in 2:time.pts){
random.walk[t] <- random.walk[t-1] + rnorm(sigma.w)

}
random.walk %>} as.ts() >% autoplot() + ggtitle('Simulated Random Walk')

Simulated Random Walk

0 25 50 75 100

- ACF plots for random walk and differenced random walk.

par (mfcol=c(1,2))
acf (random.walk); acf(diff (random.walk))

Series random.walk Series diff(random.walk)
SE SE
— —
© | © |
o o
LL LL
O — O —
< <
N L H _ T |
° W = dl
[

o In some situations, a purely random walk model may not be appropriate. Consider the following figure.

Simulated Random Walk?

40-

20-

0 25 50 75 100

- This is a random walk

- The

drift.est <- random.walk.drift 7>} diff() %>% mean() %>/ round(digits = 2)

where the estimate of ¢ is 0.56.

- The Holt-Winters function can be used to estimate both of these time series data sets.
Random Walk

HW.rw <- HoltWinters(random.walk, gamma = FALSE, beta = FALSE)
HW.rw$alpha

[1] 0.9999428

random.walk[time.pts]

[1] 0.4902215

rw.pred <- predict(HW.rw, n.ahead = 5, prediction.interval = T);
rw.pred
plot(HW.rw, rw.pred)

Random Walk with Drift

HW.rw.drift <- HoltWinters(random.walk.drift, gamma = FALSE)
HW.rw.drift$alpha; HW.rw.drift$coefficients['b']

#i# alpha
0.9940048

b
1.102261

rw.drift.pred <- predict(HW.rw.drift, n.ahead = 5, prediction.interval = T)
rw.drift.pred

Time Series:
Start = 101

End = 105
Frequency = 1
#H# fit upr lwr

101 56.23373 58.26129 54.20618
102 57.33599 60.33236 54.33963
103 58.43826 62.27540 54.60111
104 59.54052 64.16870 54.91233
105 60.64278 66.04096 55.24460

plot(HW.rw.drift, rw.drift.pred)

Holt—Winters filtering

o

Q _

T B

S _

3 _

> o _|

5 «

o _

§ o -

0 20 40 60 80 100
Time

	Stochastic Models

