
STAT 436 / 536 - Lecture 7: Key
September 26, 2018

Stochastic Models

• Thus far we have seen two approaches for estimating a time series.
1. The decompose function estimates the trend and seasonal patterns for a time series.

2. The HoltWinters function uses exponentially weighted averages to estimate the mean, trend, and
seasonal components.

• When fitting time series models, most of the deterministic features of the time series can be captured
in various ways, but regardless of the approach, we still have a residual error series, or the random
component.

• Sometimes the deterministic features capture the time series behavior, so that the residual error series
is white noise.

• Otherwise, if the residual error series contains structure, this can be exploited to improve forecasts.

White Noise

• If the time series model is defined for value y, then the residual time series can be defined as: *xt = yt−ŷt.

• A time series exhibits white noise if xt = wt, where wt are independent and identically distributed with
mean 0. Thus Cor(wi, wj) = 0 ∀ i, j

set.seed(09192018)
library(dplyr)
library(ggfortify)
rnorm(100) %>% as.ts() %>% autoplot() + ggtitle('White Noise')

−2

−1

0

1

2

0 25 50 75 100

White Noise

1

-The second order properties for white noise are: the mean term µw = 0

- the covariance γk(wt, wt+k) = 0 if k 6= 0 and σ2 otherwise

- the correlation ρk(wt, wt+k) = 0 if k 6= 0 and 1 otherwise.

- Q: will the sample correlatoin necessarily be zero from a simulation?

w <- ts(rnorm(100))
acf.obj <- acf(w)

0 5 10 15 20

−
0.

2
0.

4
1.

0

Lag

A
C

F

Series w

acf.obj

##
Autocorrelations of series 'w', by lag
##
0 1 2 3 4 5 6 7 8 9
1.000 0.211 -0.009 -0.036 -0.030 -0.104 0.009 0.194 0.116 0.015
10 11 12 13 14 15 16 17 18 19
-0.022 0.026 -0.041 -0.023 -0.012 -0.026 -0.049 -0.096 -0.025 0.040
20
-0.011

• When fitting this model, what parameters would we need to estimate? Assuming the errors come from
a normal distribution, the only necessary parameter is the variance, σ2.

2

Random Walks

• Let {xt} be a time series object, then this is a random walk if. . .

xt = xt−1 + wt

where wt is white noise.

• Using back substitution, this series can be written as:

xt = (xt−2 + wt1) + wt

xt = w1 + w2 + · · ·+ wt + x0

• The textbook defines B as the backward shift operator, such that Bxt = xt−1 and Bnxt = xt−n

• The second order properties of the random walk are µx = 0 and γk(t) = tσ2 (Note this is on HW4).

• The autocorrelation ρk(t) = 1√
1+k/t

• Note this results in a non-stationary time series as the covariance depends on t.

• A common approach with a non-stationary time series, such as a random walk, is to take the difference
between consecutive time points. This is denoted as 5xt = xt − xt−1.

• Q: what is the resulting time series after applying the differencing operator to a random walk time
series {xt}? {wt}

• Sketch out pseudocode to simulate a random walk.

3

time.pts <- 100
random.walk <- rep(0,time.pts)
sigma.w <- 1
for (t in 2:time.pts){

random.walk[t] <- random.walk[t-1] + rnorm(sigma.w)
}
random.walk %>% as.ts() %>% autoplot() + ggtitle('Simulated Random Walk')

−10

−5

0

5

0 25 50 75 100

Simulated Random Walk

- ACF plots for random walk and differenced random walk.
par(mfcol=c(1,2))
acf(random.walk); acf(diff(random.walk))

0 5 10 15 20

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series random.walk

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Series diff(random.walk)

4

• In some situations, a purely random walk model may not be appropriate. Consider the following figure.

0

20

40

0 25 50 75 100

Simulated Random Walk?

- This is a random walk with a drift term

xt = xt−1 + δ + wt,

where δ is the drift parameter.

- The drift term can be estimated from the differenced series,
drift.est <- random.walk.drift %>% diff() %>% mean() %>% round(digits = 2)

where the estimate of δ is 0.55.

- The Holt-Winters function can be used to estimate both of these time series data sets. ###### Random
Walk
HW.rw <- HoltWinters(random.walk, gamma = FALSE, beta = FALSE)
HW.rw$alpha

[1] 0.9999586
random.walk[time.pts]

[1] 7.975058

5

rw.pred <- predict(HW.rw, n.ahead = 5, prediction.interval = T);
rw.pred

Time Series:
Start = 101
End = 105
Frequency = 1
fit upr lwr
101 7.975009 9.993004 5.957014
102 7.975009 10.828826 5.121192
103 7.975009 11.470182 4.479835
104 7.975009 12.010874 3.939144
105 7.975009 12.487234 3.462784
plot(HW.rw, rw.pred)

Holt−Winters filtering

Time

O
bs

er
ve

d
/ F

itt
ed

0 20 40 60 80 100

−
10

0
5

Random Walk with Drift
HW.rw.drift <- HoltWinters(random.walk.drift, gamma = FALSE)
HW.rw.drift$alpha; HW.rw.drift$coefficients['b']

alpha
1

b
0.5032844
rw.drift.pred <- predict(HW.rw.drift, n.ahead = 5, prediction.interval = T)
rw.drift.pred

Time Series:
Start = 101
End = 105
Frequency = 1
fit upr lwr
101 54.60496 56.57987 52.63004
102 55.10824 57.92832 52.28816
103 55.61153 59.09873 52.12432
104 56.11481 60.18008 52.04954
105 56.61810 61.20648 52.02971

6

plot(HW.rw.drift, rw.drift.pred)

Holt−Winters filtering

Time

O
bs

er
ve

d
/ F

itt
ed

0 20 40 60 80 100

0
20

40
60

7

	Stochastic Models

