
STAT 436 / 536 - Lecture 8: Key
September 28, 2018

Autoregressive Models

• The random walk model can be written more generally as

xt = αxt−1 + wt,

where α = 1. In the general case, this is known as an autoregressive model.

• If a time series can be written as

xt = α1xt−1 + α2xt−2 + · · ·+ αpxt−p

then it is known as an autoregressive process of order p, also denoted by AR(p)

• The AR model can also be written in terms of the backward shift operator B.

θp(B)xt = (1− α1B − α2B2 − · · · − αpBp)xt = wt

• We have seen that the random walk is a special case of an AR(1) model. The exponential smoothing
model is also a special case where αi = α(1− α)i for i = 1, 2, . . . and p→∞.

• The name autoregressive comes from the fact that the model is a regression of xt on past terms.

• The prediction (of a point estimate) at time t is given by plugging in point estimates for the α values.

x̂t = α1xt−1 + α2xt−2 + · · ·+ αpxt−p
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• Stationarity of the AR process can be determined using the θp(B)xt representation of the series, where
B is treated as a number. This equation is known as the characteristic equation.
– The roots of the characteristic equation determine the stationarity of the series. The absolute

value of all of the roots must be greater than one for stationarity.

– Consider the AR(1) model, xt = 1
2xt−1 + wt

(1− 1
2B)xt = 0

1− 1
2B = 0

thus B = 2 and we have stationarity

– Consider the AR(2) model, xt = xt−1 + 1
4xt−2 + wt

(1−B − 1
4B2)xt = 0

1
4(B2 − 4B + 4) = 0

1
4(B − 2)2 = 0

so both roots are equal to 2 and we have stationarity.
– Consider the random walk model xt = xt−1 + wt

(1−B)xt = 0

(1−B) = 0

so B = 1 and this is a non-stationary model.

• For an AR(1) process, xt = αxt−1 + wt, the second order properties are: mean = 0 and γk = αkσ
2

1−α2 .
Note these are for |α| < 1.

• The autocorrelation function for an AR(1) process is

ρk = αk

Thus the autocorrelation decays more quickly with small α.
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• Write a function to simulate an AR(1) process
simAR <- function(alpha, sigma, time.pts){

# function to simulate and AR process
# inputs: alpha - the alpha coefficient
# : sigma - standard deviation of noise
# : time.pts - number of time points
# outputs: the time series vector as a ts object
x <- rep(0, time.pts)
for (t in 2:time.pts){

x[t] <- alpha * x[t-1] + rnorm(1,0,sigma)
}
return(ts(x))

}
ar <- simAR(alpha=.8, sigma=1, time.pts = 50)
library(ggfortify)
library(dplyr)
ar %>% autoplot
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- Now let’s examine the correlogram
set.seed(09192018)
ar.series <- simAR(alpha=.8, sigma=1, time.pts = 500)
acf.ar <- ar.series %>% acf
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acf.ar

##
## Autocorrelations of series '.', by lag
##
## 0 1 2 3 4 5 6 7 8 9
## 1.000 0.816 0.657 0.536 0.456 0.396 0.351 0.306 0.266 0.224
## 10 11 12 13 14 15 16 17 18 19
## 0.169 0.138 0.112 0.076 0.048 0.015 0.013 0.011 0.015 -0.002
## 20 21 22 23 24 25 26
## -0.030 -0.038 -0.024 -0.007 -0.022 -0.012 0.001

this is fairly close to the empirical correlation term.

- The autocorrelation will be non-zero for all lags, even though the model for time t only depends on the value
from time t− 1. So instead of looking at the autocorrelation, we are interested in the partial autocorrelation
that results after removing the effect of correlations at the shorter levels.

- The partial autocorrelation of an AR(p) process will be the pth coefficient of the fitted model. Hence, it will
be zero for all k greater than p.

set.seed(09192018)
ar.series <- simAR(alpha=.8, sigma=1, time.pts = 500)
pacf.ar <- ar.series %>% pacf
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pacf.ar

##
## Partial autocorrelations of series '.', by lag
##
## 1 2 3 4 5 6 7 8 9 10
## 0.816 -0.025 0.019 0.055 0.027 0.024 -0.005 0.003 -0.019 -0.058
## 11 12 13 14 15 16 17 18 19 20
## 0.031 -0.008 -0.052 0.000 -0.040 0.063 -0.005 0.019 -0.048 -0.049
## 21 22 23 24 25 26
## 0.038 0.049 0.012 -0.076 0.060 0.025

- The PACF is useful for determining the order of an AR process

- The ar() function in R can be used to fit AR models and has several useful properties - the order of the
AR model can be fit using AIC

- the AR coefficients can be estimated through several methods

- the AR function can be used for forecasting

ar.vals <- ar(ar.series, order.max = 2)
predict(ar.vals, n.ahead = 5)

## $pred
## Time Series:
## Start = 501
## End = 505
## Frequency = 1
## [1] -0.28474478 -0.22254696 -0.17180572 -0.13041082 -0.09664069
##
## $se
## Time Series:
## Start = 501
## End = 505
## Frequency = 1
## [1] 0.964170 1.244316 1.400032 1.494702 1.554516
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