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Bayesian Inference

The Basics

There are three core parts of any Bayesian analysis:

1. Sampling Model: This is the generative model or distribution for the data. This is often denoted as
p(y|θ) or π(y|θ).

2. Prior Distribution: This expresses prior beliefs about a parameter using a statistical distribution to
account for uncertainty. The distributed is written as p(θ) of π(θ)

3. The Posterior Distribution: Is the distribution for the parameters given the data and is completely
identified by the combination of the prior and the sampling model. Formally, the posterior distribution
can be computed as

π(θ|y) = π(y|θ)π(θ)∫
π(y|θ)π(θ)dθ .

The posterior distribution, p(θ|y) or π(θ|y), is a distribution that capture the uncertainty in the
parameters.

The Bayesian framework also can be used for constructing a predictive distribution.

- Predictive Distribution: The predictive distribution for a new prediction, π(y∗|y) or more specifically in
a time series setting π(yt+1|yt). This distribution does not contain any unknown parameters as they are
integrated out:

π(yt+1|yt) =
∫
π(yt+1|θ)π(θ|y)dθ

Bayesian Integration

• In some cases, the integrals above can be analytically solved. One example is the set of Kalman filtering
equations that you have already worked through.

• In other cases, computational algorithms such as Markov Chain Monte Carlo (MCMC) or Sequential
Monte Carlo (SMC) are used to approximate those quantities.
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State Space Models and Dynamic Linear Models

Overview

A state space model is typically expressed using two levels, the observation equation and state equation:

1. Observation Equation: The observation equation is focused on the data generating mechanism for the data
you actually observe.

2. State or Evolution Equation: This captures the dynamics of a unobservable (latent) variable.

Consider the example from the second lab:

yt = θt + εt (Observation Equation)
θt = θt−1 + ν + wt (Evolution Equation),

where εt ∼ N(0, σ2) and wt ∼ N(0, σ2
w). Note that ν, σ2, and σ2

w are all assumed known, but they can easily
be estimated in an MCMC procedure.

Parameter Estimation

Parameter estimates follow a few simple steps: initial (prior) values, prediction (propogation), and estimation
(filter).

1. Prior step: Assume we have π(θt|y1:t). That is we have a distributional belief about the location of the
latent variable at time t, given data observed up to time t.

2. Propogation step: Using the evolution equation we can propogate or predict the location of the latent
variable at the next time point to get π(θt+1|y1:t). Mathematically this follows as

π(θt+1|y1:t) =
∫
π(θt+1|θt+1)π(θt|y1:t)dθ.

Then using the updated distributional belief about θt+1 predictions can also be made for next observation:

p(yt+1|y1:t) =
∫
π(yt+1|θt+1)π(θt+1|y1:t)dθt+1.

The uncertainty in θt+1 is accounted for with the integration.

3. Estimation or filtering step: After observing data at time t+ 1, the belief about the location of θ can
be updated, which results in π(θt+1|y1:t+1).
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Specifically the filtering density is estimated as:

π(θt+1|y1:t+1) = π(yt+1|θt+1)π(θt+1|y1:t)∫
π(yt+1|θt+1)π(θt+1|y1:t)dθt+1

= π(yt+1|θt+1)π(θt+1|y1:t)
π(yt+1|y1:t

• Note the filtering equation results in the prior distribution for the next time point.

• Hence for any data point at t we can use this three step iterative procedure to make predictions and
update our beliefs.

About State Space Models

• θt is called the state process. This comes from engineering applications where a machine is assumed to
be in certain “state”.

A state space model has two assumptions:

1. (θt) is a Markov chain, which means π(θt|θ1:t−1) = π(θt|θt−1), in other words it only depends on the
immediately preceeding value and

2. Conditional on (θt), the Y ′t s are independent and Yt only depends on θt.

• Hidden markov models refer to situations where the state variables are unobserved discrete-valued
random variables
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Dynamic Linear Models

A dynamic linear model is a special case of a state-space model, where:

- The prior on the state vector for time 0, follows a normal distribution:

θ0 ∼ Np(µ0, C0)

- and the following equations are specified for the observation and evolution equations:

Yt = Ftθt + vt, vt ∼ N(0, Vt)
θt = Gtθt−1 + wt, wt ∼ N(0,Wt)

An example of a simple dynamic linear model would be the random walk plus noise model,

Yt = θt + vt, vt ∼ N(0, V )
θt = θt−1 + wt, wt ∼ N(0,W ),

This model works well with no clear trend or season variation, and is often called the local level model.

The DLMs can be regarded as a generalization of a linear regression model, which allows time varying
coefficients. Hence, rather than

Yt = θ1 + θ2xt + εt ε ∼ N(0, σ2)

we have
Yt = θt,1 + θt,2xt + εt ε ∼ N(0, σ2

t )

where the dynamics of θ̃t are controlled by the evolution equation.

- We will see that all of the AR - MA and ARMA type models are special cases of dynamic linear models.
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Project Overview

My preference is that you use the project as an opportunity to use the state-space model framework that we
have been developing.

For writing the project summaries, we will heavily rely on ideas in Schimel’s Writing Science.

1. Opening (O): It frames an interesting question. What do you need to understand about the situation to
follow the story? What is the larger problem you are addressing?

2. Challenge (C): It presents your research plan. What specific question do you propose to answer?

3. Action (A): It discusses the results. What happens to address the challenge? In a paper, this describes the
work you did.

4. Resolution (R): It leaves the reader with an important conclusion about how our understanding of the
world has changed as a result of the work. This is your conclusion – what did you learn from your work?

For Friday November 2, as part of HW 6, turn in an updated project proposal. The proposal should address
the following points:

1. What is your opening? This should identify the larger problem to which you are contributing, give readers
a sense of the direction your paper is going and make it clear why it is important. It should engage the
widest audience practical.

2. What is your specific question or hypothesis?

3. Include a set of data visualization settings that related the question or hypotheses addressed above.
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