1. Circle the appropriate choice of TRUE or FALSE.

 TRUE FALSE: \(\int \frac{1}{\sqrt{1 - x^2}} \, dx = \arcsin x + C \) (T)

 TRUE FALSE: \(\int \frac{1}{1 + x^2} \, dx = \ln |1 + x^2| + C \) (F)

 TRUE FALSE: \(\int \frac{1}{x} \, dx = \ln x + C \) (F)

 TRUE FALSE: \(\int \sec x \cdot \tan x \, dx = \sec x + C \) (T)

 TRUE FALSE: \(\int \tan x \, dx = \sec^2 x + C \) (F)

2. Evaluate each integral.

 (a) \(\int e^{\tan x} \sec^2 x \, dx \)
 ANS (u-sub): \(e^{\tan x} + C \)

 (b) \(\int x \ln x \, dx \)
 ANS (IBP): \(\frac{x^2}{2} \ln |x| - \frac{x^2}{4} + C \)

 (c) \(\int \frac{x}{2-x^2} \, dx \)
 ANS (u-sub): \(-\frac{1}{2} \ln |2-x^2| + C \)

 (d) \(\int \frac{1}{x^2 + 4} \, dx \)
 ANS (recognize arctan form, u-sub): \(\frac{1}{2} \arctan \left(\frac{x}{2} \right) + C \)

 (e) \(\int \arcsin 2x \, dx \)
 ANS (IBP): \(x \arcsin(2x) + \frac{1}{2} \sqrt{1 - 4x^2} + C \)

 (f) \(\int e^4 \frac{1}{x \sqrt{\ln x}} \, dx \)
 ANS (u-sub): \(2 \)

 (g) \(\int \frac{1}{e^x} \, dx \)
 ANS (IBP): \(1 - \frac{2}{e} \)

 (h) \(\int_0^{\sqrt{5}} \frac{x}{\sqrt{x^2 + 4}} \, dx \)
 ANS (u-sub): \(1 \)

 (i) \(\int_0^{\pi^2} \sin \sqrt{x} \, dx \)
 ANS (sub: \(w = \sqrt{x} \), IBP): \(2\pi \)

 (j) \(\int_1^2 \frac{x - 1}{x^2} \, dx \)
 ANS (manipulate algebraically): \(\ln 2 - \frac{1}{2} \)

 (k) \(\int x \sqrt{1 + x} \, dx \)
 ANS (u-sub, solve for \(x \)): \(\frac{2}{5} (1 + x)^{5/2} - \frac{2}{3} (1 + x)^{3/2} + C \)
\[(l) \int_0^3 \frac{1 + 2x}{9 + x^2} \, dx \quad \text{ANS (split numerator): } \frac{\pi}{12} + \ln 18 - \ln 9\]

\[(m) \int_{1/8}^{1/4} \frac{1}{\sqrt{1 - 16x^2}} \, dx \quad \text{ANS (recognize arcsin form, u-sub): } \frac{\pi}{12}\]

\[(n) \int x^2 \cos x \, dx \quad \text{ANS (IBP twice): } x^2 \sin x + 2x \cos x - 2 \sin x + C\]

\[(o) \int \frac{x^2}{1 + x^6} \, dx \quad \text{ANS (u-sub with } u = x^3): \frac{1}{3} \arctan(x^3) + C\]

3. Area between curves

(a) Consider the area bounded between the functions \(y = x^2, \ y = x\) for \(0 \leq x \leq 2\). Carefully sketch the graphs and find the area. \textbf{ANS: 1}\n
(b) Consider the area bounded between the functions \(y = \cos x, \ y = \sin 2x\) for \(0 \leq x \leq \frac{\pi}{2}\). Carefully sketch the graphs and find the area. \textbf{ANS: 1/2}\n
4. Volumes

(a) Find the volume of the described solid: The base is the unit circle \(x^2 + y^2 = 1\) and its cross sections are squares perpendicular to the \(y\)-axis. \textbf{ANS: } \frac{16}{3}\n
(b) Find the volume of the described solid: The base is bounded by \(y = \frac{1}{x}\) and the \(x\)-axis for \(x \in [1, 3]\). Cross sections perpendicular to the \(x\)-axis are semicircles. \textbf{ANS: } \frac{\pi}{12}\
5. For the given curves and axes of rotation:

(a) Curves: \(y = x^2 \) and \(y = 2 - x \)
Rotate about \(x \)-axis.

(b) Curves: \(y = e^x \), \(x \)-axis, \(0 \leq x \leq 2 \)
Rotate about the line \(x = -2 \).

- Washers: \(V = \int_{-2}^{1} \pi \left[(2 - x)^2 - (x^2)^2 \right] \, dx \)
- Shells: \(\int_{0}^{1} 4\pi y \sqrt{y} \, dy + \int_{1}^{4} 2\pi y (2 - y + \sqrt{y}) \, dy \)
- ANS: Volume: \(\frac{72\pi}{5} \)

- Washers: \(\int_{0}^{1} \pi \left[3^2 - 2^2 \right] \, dy + \int_{1}^{e} \pi \left[3^2 - (\ln y + 2)^2 \right] \, dy \)
- Shells: \(V = \int_{0}^{1} 2\pi (x + 2)e^x \, dx \)
- ANS: Volume: \(2\pi(e - 1) \)

6. Work

(a) Calculate the work required to build a cylindrical marble column of height 10 meters and radius 0.5 meters. It may be helpful to know that the density of marble is \(\rho = 2560 \frac{kg}{m^3} \).
ANS: \(\frac{25\pi \rho g}{2} \) J

(b) A tank full of milk (\(\rho = 1030 \frac{kg}{m^3} \)) is in the shape of the graph of \(y = x^4 \) for \(0 \leq x \leq 2 \) rotated about the \(y \)-axis. Calculate the work required to pump all of the milk out a spout of length 1 m from the top of the tank.
ANS: \(\frac{4736\pi \rho g}{15} \) J

(c) A tank buried in the desert contains a large water supply. The tank is a right circular cylinder with height 4 meters and radius 12 meters (see the diagram). The top of the tank is 2 meters below ground level. If the tank is completely full of water, set up an integral representing the work required to pump all the water out the spigot.
ANS: \(\int_{0}^{4} \rho g \pi (144)(9 - y) \, dy \)