0. Calculate \(\int \int_R x \, dA \) where \(R \) is the triangular region with vertices \((0,0), (0,2), (1,0)\).

\[
\int_0^1 \int_{1-x}^{2-2x} x \, dy \, dx = \int_0^1 x \left[\frac{2(1-x)}{1-x} \right]_1^0 = \int_0^1 x \cdot (1-x) \, dx = \int_0^1 x - x^2 \, dx = \left[\frac{1}{2} x^2 - \frac{1}{3} x^3 \right]_0^1 = \frac{1}{6}
\]

2. Switch the order of integration and compute \(\int_0^1 \int_{y/3}^{1} \sqrt{1 + x^3} \, dx \, dy \)

\[
= \int_0^1 \int_0^{y/3} (1 + x^3)^{1/2} \, dx \, dy = \int_0^1 \left(\frac{2}{3} \right) (1 + x^3)^{3/2} \, dy = \left[\frac{1}{2} \frac{2^{3/2}}{3} (1 + x^3)^{3/2} \right]_0^1 = \left| \frac{1}{6} \left(2^{3/2} - \frac{1}{6} \right) \right|
\]
3. Switch to polar coordinates and compute \[\int_0^1 \int_0^{\sqrt{2-y^2}} \int_0^{\sqrt{y^2-x^2}} r^3 \, dx \, dy \, dz. \]

\[= \int_0^{\pi/4} \int_0^1 r^3 \, dr \, d\theta \]

\[= \int_0^{\pi/4} 1 \, d\theta = \left[\frac{\pi}{4} \right] \]

4. \(\) Set up iterated triple integrals, with appropriate limits, for finding the volumes of the solid regions \(E \) below. DO NOT EVALUATE.

5. \(E \) is the solid region bounded by the planes: \(x = 0 \), \(z = 0 \), \(x - y + z = 1 \), and \(2x + y + 2z = 2 \).

\[\int_0^1 \int_0^{1-x} \int_0^{2-2x-2z} 1 \, dz \, dx \, dy \]

6. \(E \) is the solid region that lies outside the cylinder \(x^2 + y^2 = 4 \), below the paraboloid \(z = 9 - x^2 - y^2 \), and above the \(xy \)-plane.

\[\int_0^{\pi} \int_0^3 \int_0^{\sqrt{9-r^2}} r \, dz \, dr \, d\theta \]
5. Compute $\iiint_E z \, dV$, where E is the region in the first octant that lies outside (below) the cone $z = \sqrt{x^2 + y^2}$ and inside the sphere $x^2 + y^2 + z^2 = 4$.

\[
\begin{align*}
\iiint_E z \, dV &= \int_0^{\pi/2} \int_0^{\pi/2} \int_0^1 \rho^2 \sin \phi \rho \cos \phi \, d\rho \, d\phi \, d\theta \\
&= \int_0^{\pi/2} \int_0^{\pi/2} \left(\frac{1}{4} \rho^4 \right) \cos \phi \sin \phi \, d\phi \, d\theta \\
&= \int_0^{\pi/2} \frac{1}{4} \sin \phi \cos \phi \, d\phi \, d\theta = \int_0^{\pi/2} 2 \sin^2 \phi \, d\phi \\
&= \int_0^{\pi/2} 2 \left(1 - \cos 2\phi \right) \, d\phi = \int_0^{\pi/2} 1 \, d\theta = \frac{\pi}{2}
\end{align*}
\]

6. Let C be the straight line segment from $(1, 0, 2)$ to $(-1, 2, 1)$.

Compute:

5. $\oint_C x \, dy = \int_0^1 (1 - 2t)(2) \, dt$

\[
\begin{align*}
\oint_C x \, dy &= \int_0^1 (1 - 2t)(2) \, dt \\
&= 2t - 2t^2 \bigg|_0^1 = 0
\end{align*}
\]

7. $\oint_C y \, ds = \int_0^1 2t \sqrt{(-2)^2 + (2t)^2 + (-1)^2} \, dt$

\[
\begin{align*}
\oint_C y \, ds &= \int_0^1 2t \sqrt{4 + 4t^2 + 1} \, dt \\
&= \int_0^1 2t \cdot 3 \, dt = 3t^2 \bigg|_0^1 = 3
\end{align*}
\]