2) Given \(f(x,y,z) = \sqrt{x^2 + y^2} \)

a) Find a unit vector that points in the direction in which \(f \) increases most rapidly at \(P(3,2,4) \).

b) What is the rate of change of \(f \) at \(P(3,2,4) \) in the direction found in a)?

c) Find an equation of the tangent plane to \(\sqrt{x^2 + y^2} = 5 \) at \(P(3,2,4) \).

d) Given \(\sqrt{x^2 + y^2} = 5 \), find \(\frac{dz}{dy} \) at \(P(3,2,4) \).

e) Without using a calculator, give me a good (algebraic) approximation of \(\sqrt{3^2 - (1.9)^2} \).

2) Suppose that resistance \(R \) is given by \(R = \frac{1}{R_1 + R_2} \) and that \(R_1 \) and \(R_2 \) are changing at the rates of 2 and -3 ohms per sec, respectively. At what rate is \(R \) changing when \(R_1 = 100 \) ohms and \(R_2 = 200 \) ohms?

3) The picture below is a contour (level curve) plot of a function \(z = f(x,y) \) of two variables. Assume that the distance between adjacent drawn curves is 1 unit.

a) Sketch in \(\nabla f(2,3) \), with appropriate length and direction.

b) Using a), estimate the rate of change of \(f \) at \(P(2,3) \) in the direction of \(\mathbf{v} = \langle 3, 4 \rangle \).

c) Suppose an object moves across \(P(2,3) \) with velocity \(\langle 3, 4 \rangle \). Using b), estimate the time rate of change of \(f \).

4) Find all critical points of \(f(x,y) = x^2 + 4xy + y^2 - 2x + 8y + 3 \) and classify each as being a point at which \(f \) has a relative max, min, or saddle.

5) a) Find the max and min of \(f(x,y) = x^2 + y^2 - 2x \) subject to \(x^2 + y^2 = 4 \).

b) What are the absolute max and absolute min of \(f(x,y) = 2x^2 + y^2 - 2x \) on the region \(x^2 + y^2 \leq 4 \)?