Show your work!

1) For parts a), b), c) below, let \(f(x, y, z) = xze^{xy} \).

 a) At the point \((2, 0, 3)\), in what direction does \(f \) increase most rapidly?

 b) At the point \((2, 0, 3)\), does \(f \) increase or decrease in the direction of \(\mathbf{v} = \langle z^2 - 2y^2 + 2z \rangle \)? At what rate?

 c) As one moves from the point \((2, 0, 3)\) in the direction of \(\mathbf{v} = \langle z^2 - 2y^2 + 2z \rangle \) with speed equal to 5, what is the time rate of change of \(f \)?

 d) Find an equation of the tangent plane to the graph of \(xze^{xy} = 6 \) at \((2, 0, 3)\).

 e) Given \(xze^{xy} = 6 \), find \(\frac{\partial x}{\partial z} \) at \((2, 0, 3)\).
2) Given \(g(x,y) = y(1+y/x)^5 \), find \(g_{xy} \).

3) Find all critical points of \(f(x,y) = x^2 - xy + y^2 - 8x + 7y + 5 \) and classify each as a point where \(f \) has a local max, local min or saddle (or none of these).
4) Find the coordinates of the points on the ellipsoid $x^2 + 3y^2 + 4z^2 = 25$ at which the function $f(x,y,z) = 3x - 6y + 4z$ is maximized and those at which f is minimized.