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Abstract. We introduce flagged (∞, n)-categories and prove that they are equivalent to Segal

sheaves on Joyal’s category Θn. As such, flagged (∞, n)-categories provide a model-independent
formulation of Segal sheaves. This result generalizes the statement that n-groupoid objects in

spaces are effective, as we explain and contextualize. Along the way, we establish a useful expres-

sion for the univalent-completion of such a Segal sheaf. Finally, we conjecture a characterization
of flagged (∞, n)-categories as stacks on (∞, n)-categories that satisfy descent with respect to

colimit diagrams that do not generate invertible i-morphisms for any i.
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Introduction

Many examples of (∞, n)-categories of especial interest, even for n = 1, are univalent-completions
of naturally presented Segal sheaves on the category Θn. The following replacements occur as
univalent-completions:

• a group by its moduli space of torsors, which loses conjugation information within the group;
• a ring by its category of modules, which remembers only its Morita-type;
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• a category by its idempotent completion;
• a suitably connective sequence (X0 → · · · → Xn) of spaces by the space Xn alone;
• a smooth closed manifold by its smooth h-cobordism-type, which loses simple-homotopy-

type.

In light of this lossy univalent-completion construction, it is in order to find a conceptual, model-
independent, formulation of Segal sheaves on Θn. Our purpose for such a formulation is to accom-
modate native examples of such entities, and also to house such entities in a framework that can
borrow results from established (∞, n)-category theory (even for n = 1).

In this paper we give a model-independent formulation of Segal sheaves on Θn, a corollary
concerning higher groupoid objects, and conjecture another model-independent formulation; we
state these three assertions informally here.

(1) (Theorem 0.26) A Segal sheaf on Θn is equivalent to a flag C0 → C1 → · · · → Cn in which
each Ci is an (∞, i)-category and, for each 0 ≤ k ≤ i ≤ j ≤ n, the functor Ci → Cj is
surjective on spaces of k-morphisms with specified source-target.

(2) (Corollary 0.32) An n-groupoid object in Spaces is precisely a flag X0 → X1 → · · · → Xn

of spaces for which, for each 0 ≤ i ≤ j ≤ n, the map Xi → Xj is i-connective.
(3) (Conjecture 0.44) A Segal sheaf on Θn is a stack on the∞-category Catn of (∞, n)-category

that satisfies descent with respect to those colimit diagrams that do not generate invertible
i-morphisms for any 0 ≤ i ≤ n.

Conventions. We make use of Lurie’s work [Lu1], as well as Joyal’s work [Jo1], for the founda-
tions of ∞-category theory – there, quasi-category theory. This includes a comprehensive theory
of colimits, limits, (space-valued) presheaves, the Yoneda embedding as a colimit completion, the
unstraightening construction, and Bousfield localizations among presentable ∞-categories. We as-
sume the reader has operational, though not necessarily technical, acquaintance with these features
of ∞-category theory. We also call on some more specific features of the ∞-category Spaces, which
are consequences of the fact that it is an ∞-topos in the sense of §6 of [Lu1]. We assume the reader
has a working acquaintance with Joyal’s category Θn, as it is presented in Berger’s work [Be] as
well as Rezk’s work [Re2]. We assume the reader has a working acquaintance with (∞, n)-categories
as developed by Rezk in [Re2].

We make use of the following notation.

Notation 0.1.
• We may denote the colimit of a presheaf F : Cop → Spaces as |F| := colim(F).

• Let C be an ∞-category. By right Kan extension, each presheaf (Cop F−→ Spaces) ∈ PShv(C)
extends along the Yoneda embedding as a functor

F : PShv(C)op Map(−,F)−−−−−−−→ Spaces , E 7→ F(E) := Map(E,F) .

0.1. Setup and main results. We give a definition of Joyal’s category Θn ([Jo2]), which follows
Definition 3.9 in [Be].

Definition 0.2. The category Θn, and its subcategory Θcls
n ↪→ Θn of closed morphisms, are defined

by induction on n as follows.

• For n < 0, Θn := ∅. Assume n ≥ 0. An object in the category Θn is a pair of objects
[p] ∈ ∆ and (S1, . . . , Sp) ∈ (Θn−1)×p; such an object is typically denoted [p](S1, . . . , Sp).

A morphism in Θn from [p](S1, . . . , Sp) to [q](T1, . . . , Tq) is a morphism [p]
σ−→ [q] in ∆

together with, for each 0 < i ≤ p and σ(i − 1) < j ≤ σ(i), a morphism Si
τij−−→ Tj in Θn.

Composition of morphisms in Θn is given by composing morphisms in ∆ and composing
collections of morphisms in Θn−1.

• For each n ≥ 0, the subcategory Θcls
n ↪→ Θn contains all objects, and for n > 0, only those

morphisms [p](S1, . . . , Sp)

(
σ,(τij)

)
−−−−−−→ [q](T1, . . . , Tq) for which σ is a consecutive inclusion and

each τij is a morphism in Θcls
n−1.
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For 0 ≤ k ≤ n, the k-cell is ck := [1](ck−1) for k > 0 and c0 = [0].

Remark 0.3. Consider the (2, 1)-category Catstrict
n of strict n-categories, by which it is meant the

(2, 1)-category of ordinary categories enriched over the Cartesian monoidal (2, 1)-category of strict

(n− 1)-categories. There is a fully faithful functor Θn ↪→ Catstrict
n , as established in [Be]. The nerve

functor is the restricted Yoneda functor along this fully faithful functor:

Catstrict
n −→ PShv(Θn) , C 7→

(
T 7→ Catstrict

n (T,C)
)
.

Notation 0.4. Let 0 ≤ i ≤ n. The strict i-category ci−1 o E(c1) corepresents an invertible i-
morphism in a strict n-groupoid. The presheaf on Θn which is its nerve is given the same notation.
This is a special case of Definition 2.1.

Notice the morphism between presheaves on Θn,

(1) ci−1 o E(c1) −→ ci−1 ,

corepresenting identity i-morphisms as invertible i-morphisms within strict n-categories.

Definition 0.5.
• A Segal cover in Θn is a colimit diagram J. → Θcls

n . The ∞-category of Segal sheaves (on
Θn) is the full ∞-subcategory

Shv(Θn) ⊂ PShv(Θn)

consisting of those presheaves that carry (the opposites of) Segal covers to limit diagrams.

• For 0 < i ≤ n, the i-univalence diagram in Θn is the functor
(
Θn/ci−1oE(c1)

). → Θn which is
adjoint to (1). The∞-category of univalent Segal sheaves (on Θn) is the full∞-subcategory

Shvunv(Θn) ⊂ Shv(Θn)

consisting of those Segal sheaves that carry (the opposites of) univalence diagrams to limit
diagrams.

Remark 0.6. We use the notation Shv(Θn) for Segal sheaves on Θn to suggestively regard the
Segal condition on a presheaf as a descent condition with respect to a notion of a cover. We warn
the reader, however, that Segal covers do not form a Grothendieck topology on Θn. Likewise,
the ∞-category Shv(Θn) it is not an ∞-topos; therefore, there is no Grothendieck site for which
Shv(Θn) is its ∞-category of sheaves. Nevertheless, the Segal covers of Definition 0.5 do define a
Grothendieck topology on the subcategory Θcls

n ⊂ Θn. Said another way, the pullback ∞-category
in the diagram

Shv(Θcls
n ) //

��

Shv(Θn)

��
PShv(Θcls

n ) // PShv(Θn)

is an ∞-topos. In fact, this ∞-topos is free on its infinitesimal basics:

PShv(Gcls
n ) ' Shv(Θcls

n ) ,

where Gcls
n ⊂ Θcls

n is the full subcategory consisting of the cells.

We recall the following culminating definition of [Re2].

Definition 0.7 ([Re2]). The ∞-category Catn of (∞, n)-categories is initial among presentable
∞-categories under Θn,

Θn −→ Catn ,

that carry Segal covers to colimit diagrams and carry univalence diagrams to colimit diagrams.

Observation 0.8. From their defining universal properties, there is a canonical identification be-
tween ∞-categories under Θn:

Catn ' Shvunv(Θn) .
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Definition 0.9. Let 0 ≤ i ≤ n. A functor C → D between (∞, n)-categories is i-connective if, for
each 0 ≤ k ≤ i, each solid diagram among (∞, n)-categories

∂ck //

��

C

��
ck //

88

D

can be filled.

Example 0.10. Let X→ Y be a map between∞-groupoids, and let n ≥ 0 be an integer. Regarded
as a functor between (∞, n)-categories, it is i-connective if and only if it is i-connective as a map
between spaces.

Remark 0.11. Let C → D be a functor between (∞, n)-categories. One might say this functor is
k-surjective if it is surjective on spaces of k-morphisms with specified source-target. More precisely,

if, for each functor ∂ck → C, the resulting map between spaces Map∂ck/(ck,C)→ Map∂ck/(ck,D) is
surjective on path components. Through this terminology, the functor C→ D being i-connective is
equivalent to it being k-surjective for each 0 ≤ k ≤ i.

Definition 0.12. A flagged (∞, n)-category is a sequence of morphisms among (∞, n)-categories

C0 −→ C1 −→ · · · −→ Cn

satisfying the following conditions:

• for each 0 ≤ i ≤ n, the (∞, n)-category Ci is actually an (∞, i)-category;
• for each 0 ≤ i ≤ j ≤ n, the functor Ci → Cj is i-connective.

The ∞-category of flagged (∞, n)-categories is the full ∞-subcategory

fCatn ⊂ Fun
(
[n],Catn

)
consisting of the flagged (∞, n)-categories.

Example 0.13. In general, a flagged (∞, 1)-category is an (∞, 1)-category C, together with a
surjective functor G → C from an ∞-groupoid. Here surjective means essentially surjective, or
equivalently it means π0-surjective on spaces of objects.

Example 0.14. Let A be an associative algebra in the Cartesian symmetric monoidal ∞-category
Spaces. Its deloop ∗ → BA is an∞-category equipped with a functor from the terminal∞-groupoid
which is surjective on maximal ∞-subgroupoids.

Example 0.15. More generally, let A an En-algebra A in the Cartesian symmetric monoidal ∞-
category Spaces. Its n-fold deloop ∗ → · · · → ∗ → BnA is an (∞, n)-category equipped wiht a
functor from the terminal (∞, n− 1)-category which is (n− 1)-connective.

Example 0.16. Consider the ordinary category Morita whose objects are associative rings, whose
morphisms from A to B are (B,A)-bimodules, and whose composition rule is given as follows: for P
a (B,A)-bimodule, and for Q a (C,B)-bimodule, the composition Q◦P is the (C,A)-bimodule P⊗

B
Q.

Equivalences in Morita are Morita equivalences between rings. In particular, for each commutative
ring R, the objects Mat2×2(R) and R are equivalent in Morita. Consider the flagged (∞, 1)-category

Rings∼ −→ Morita .

The underlying ∞-groupoid of this flagged (∞, 1)-category is, by design, that of isomorphisms
between associative rings.

Example 0.17. More generally, consider the (2, 1)-category Corr whose objects are ordinary cat-
egories and whose morphisms from C to D are (D,C)-bimodules, and whose composition rule is
given by coend. Two categories are equivalent in Corr if their idempotent completions are equiv-
alent as categories. In particular, the ordinary category corepresenting an idempotent and that
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corepresenting a retraction are equivalent in Corr yet they are not equivalent as categories – there
is a unique fully faithful epimorphism between them, and it is not surjective. Consider the flagged
(∞, 1)-category

Cat∼ −→ Corr .

The underlying ∞-groupoid of this flagged (∞, 1)-category is, by design, that of equivalences be-
tween ordinary categories.

Example 0.18. We make use of the terminology introduced in Remark 0.11. In general, a flagged
(∞, 2)-category is an (∞, 2)-category C2, together with a functor C1 → C2 from an (∞, 1)-category
that is 0-surjective and 1-surjective, together with a 0-surjective functor C0 → C1 from an ∞-
groupoid.

Example 0.19. Let G be an (∞, 0)-category, which is simply a space. Denote by G≤−1 its (−1)-
truncation: this is a space which is initial if G is empty, and is final otherwise. Then G → G≤−1 is
a flagged (∞, 1)-category. This construction is present in the definition of an enriched ∞-category,
as developed in [GH]. Namely, for V a monoidal ∞-category, the canonical functor to its deloop
∗ → BV is a flagged (∞, 1)-category (internal to Cat). A V-enriched ∞-category, with underlying

∞-groupoid C0, is a lax functor between flagged (∞, 1)-categories homC : (C0 → (C0)≤−1)
lax−→ (∗ →

BV) satisfying a certain univalence condition.

Example 0.20. A flagged (∞, n)-category in which each constituent (∞, i)-category is, in fact,
an ∞-groupoid is precisely a flag of spaces (X0 → · · · → Xn) in which each map Xi → Xj is
i-connective. (For an interesting example, consider a knot K ⊂ S3, and take X0 = X1 = K and
X2 = X3 = S3. For another interesting example, consider a point ∗ ∈ X in an n-connective space
and take X0 = · · · = Xn−1 = ∗ and Xn = X.) The underlying (∞, n)-category of this flagged
(∞, n)-category is the ∞-groupoid Xn, which is blind to the maps Xi → Xn. In the example
coming from a point ∗ ∈ X in an n-connective space, this flagged (∞, n)-category is the En-algebra
ΩnX, whereas the (∞, n)-category associated to this flagged (∞, n)-category is its n-fold deloop X,
as an unpointed space. In the case n = 1, the space of automorphisms of X is the space of outer
automorphisms of the E1-algebra ΩX.

Example 0.21. Two closed (n − 1)-manifolds are equivalent as (n − 1)-morphisms in the (∞, n)-
category Bordn if and only if they are h-cobordant (see §2.2 of [Lu3] for a discussion of this).
Consider the fantastic example of a flagged (∞, n)-category

Bord0 −→ Bord1 −→ · · · −→ Bordn

given by the standard functors. The underlying (∞, i)-category in this flagged (∞, n)-category, by
design, codifies diffeomorphisms between compact i-manifolds (with corner structure).

Observation 0.22. Consider the standard sequence of fully faithful right adjoint functors

(2) Θ0 ↪→ Θ1 ↪→ . . . ↪→ Θn−1 ↪→ Θn .

Each of the functors in this sequence, as well as their left adjoints, preserves Segal covers and univa-
lence diagrams. Therefore, left Kan extension along each functor in the above sequence determines
a sequence of fully faithful left adjoint functors

Cat0 ↪→ Cat1 ↪→ . . . ↪→ Catn−1 ↪→ Catn ;

the right adjoint to each of these functors is given by restriction along the corresponding functor
in (2).

Terminology 0.23. For each 0 ≤ i ≤ j ≤ n, the value of the right adjoint to Cati ↪→ Catj on an
(∞, j)-category C is its maximal (∞, i)-subcategory C≤i ⊂ C.

Observation 0.24. Evaluation at the target defines a left adjoint

fCatn −→ Catn
5



in a localization between∞-categories. The right adjoint carries an (∞, n)-category C to the flagged
(∞, n)-category

C≤0 −→ C≤1 −→ . . . −→ C≤n−1 −→ C≤n = C .

The fully faithful functors

(3) Θn ↪→ Catn ↪→ fCatn

determine the restricted Yoneda functors

(4) fCatn −→ PShv(Catn) and fN : fCatn −→ PShv(Θn) .

In light of the factorization (3), the functor fN extends the standard nerve functor:

N : Catn ↪→ fCatn
fN−−→ PShv(Θn) .

Remark 0.25. Let C = (C0 → C1 → · · · → Cn) be a flagged (∞, n)-category. The value of the
presheaf fN(C) on T ∈ Θn is the space of fillers in the commutative diagram among (∞, n)-categories:

T≤0
//

��

T≤1
//

��

· · · // T≤n−1
//

��

T≤n

��
C0

// C1
// · · · // Cn−1

// Cn.

In the case that each canonical functor to the maximal (∞, i)-subcategory Ci → (Cn)≤i is an
equivalence, such a diagram is just the data of its rightmost vertical arrow.

Here is our main result, which we prove in §3.4.

Theorem 0.26. The restricted Yoneda functor

fN : fCatn
(4)−−−→ PShv(Θn)

is fully faithful, with image consisting of those presheaves that carry (the opposites of) Segal covers
to limit diagrams:

fN : fCatn
'−−→ Shv(Θn) .

Remark 0.27. Theorem 0.26 offers a model-independent description Segal sheaves on Θn, as we
explain. By Definition 0.7, the ∞-category Catn of (∞, n)-categories is defined via a universal
property that references Θn. The work of Barwick–Schommer-Pries ([BS]) articulates a sense in
which this dependence on Θn can be relieved, or rather replaced by an assortment of other basic
categories Tn. In this way, we regard the∞-category Catn of (∞, n)-categories as model-independent
– it can be described as a full ∞-subcategory of presheaves on an assortment of basic categories
Tn, not just Tn = Θn. Supported by this, the Definition 0.12 of the ∞-category of flagged (∞, n)-
categories, then, is a model-independent notion. Theorem 0.26 therefore gives a model-independent
description of Segal sheaves on Θn.

0.2. A corollary. We draw a corollary of Theorem 0.26, as it specializes to the case of groupoids.
To state this corollary, we give two auxiliary definitions.

Recall from Notation 0.4 the strict n-category ci−1 o E(c1). Consider the functor between strict
n-categories,

(5) ci −→ ci−1 o E(c1) ,

corepresenting invertible i-morphisms as examples of i-morphsims within strict n-categories.

Definition 0.28. The ∞-category of n-groupoid objects (in Spaces) is the full ∞-subcategory

nGpd[S] ⊂ PShv(Θn)

consisting of those presheaves G : Θop
n → Spaces that satisfy the following conditions.

(1) G carries (the opposites of) Segal diagrams to limit diagrams.
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(2) For each 0 < i ≤ n, each solid diagram among presheaves on Θn admits a filler:

ci //

(5)

��

G

ci−1 o E(c1)

∃

66

.

Remark 0.29. Let 0 < i ≤ n. The morphism ci
(5)−−→ ci−1 o E(c1) in Shv(Θ1) is an epimorphism.

So, for each Segal sheaf F on Θn, the map between spaces induced by F
(
ci−1 o E(c1)

) F(5)−−−→ F(ci)
is a monomorphism. Therefore, condition (2) in Definition 0.28 is equivalent to the condition that,

for each 0 < i ≤ n, this monomorphism G
(
ci−1 o E(c1)

) '−→ G(ci) is surjective on components, and
is therefore an equivalence. In the case that G is the nerve of a strict n-category, this condition (2)
is exactly the condition that G is, in fact, a strict n-groupoid. This justifies the terminology of
Definition 0.28.

The next definition isolates the examples discussed in Example 0.20.

Definition 0.30. The ∞-category of n-flagged ∞-groupoids is the full ∞-subcategory

fGpdn ⊂ Fun([n], Spaces)

of sequences (X0 → · · · → Xn) for which the map Xi → Xj is i-connective for each 0 ≤ i ≤ j ≤ n.

Observation 0.31. There are evident fully faithful functors

nGpd[S] ↪→ Shv(Θn) and fGpdn ↪→ fCatn .

We isolate the following consequence of Theorem 0.26, which is of independent interest. Its proof
occupies §3.5.

Corollary 0.32. The equivalence of Theorem 0.26 restricts as an equivalence between∞-categories:

fGpdn
fN

'
//

Obs 0.31

��

nGpd[S]

Obs 0.31

��
fCatn

fN

'
Thm 0.26

// Shv(Θn).

Remark 0.33. Let X = (X0 → X1 → · · · → Xn) be an n-flagged ∞-groupoid. Through Corol-
lary 0.32, this is equivalent data to the n-groupoid object fN(X). This n-groupoid object fN(X) is
the Segal sheaf on Θn with the following values on cells and their boundaries.

• fN(X)(c0) ' X0. Also, fN(X)(∂c1) ' X0 ×X0.
• fN(X)(c1) ' X0 ×

X1

X0. Also, fN(X)(∂c2) '
(
X0 ×

X1

X0

)
×

X0×X0

(
X0 ×

X1

X0

)
.

•

fN(X)(c2) ' X2 ×(
X2 ×

X2

X2

)
×

X2×X2

(
X2 ×

X2

X2

) (X0 ×
X1

X0

)
×

X0×X0

(
X0 ×

X1

X0

)
' X2 ×

XS1
fN(X)(∂c2) .

• In general, there are pullback squares among spaces:

fN(X)(ci) //

��

Xi

diag

��

fN(X)(∂cj) //

��

fN(X)(cj−1)

��
fN(X)(∂ci) // XSi−1

i and fN(X)(cj−1) // fN(X)(∂cj−1).
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Informally, an object in fN(X) is a point in X0. A 1-morphism in fN(X) is a path in X1 equipped
with lifts of its endpoints to X0. A 2-morphism in fN(X) is a 2-disk in X2, equipped with compatible
lifts of its hemispheres to X1 and lifts of its poles to X0. Continuing, an i-morphism is an i-disk
in Xi equipped with compatible lifts of its hemispherical j-strata to Xj for j < i. Informally,
composition is given by concatenating disks.

Remark 0.34. Let X be an n-flagged ∞-groupoid. The connectivity assumptions on X ensure
that the space Xn can be recovered as the colimit of the n-groupoid object fN(X). Without these
connectivity assumptions, this colimit | fN(X)| would report a suitable connective cover of Xn.

Remark 0.35. Let X = (X0 → X1) be a 1-flagged ∞-groupoid. The 1-groupoid object fN(X),
which is in particular a simplicial space, is the Cech nerve of the map X0 → X1, in the sense
of §6.1.2 of [Lu1]. In this sense, Corollary 0.32 generalizes the fact that every 1-groupoid object G•
in Spaces is the Cech nerve of the canonical map G0 → |G•| to its colimit.

Remark 0.36. Let X = (X0 → · · · → Xn) be an n-flagged ∞-groupoid. After Remark 0.35,
the n-groupoid object fN(X), which is in particular a presheaf on Θn, can be interpreted as the
n-Cech nerve of the given flag X. In this way, Corollary 0.32 states that every n-groupoid object

Θop
n

G•−−→ Spaces in Spaces is the n-Cech nerve of the canonical flag of maps G0 → |G•≤1| → |G•≤2| →
· · · → |G•≤n|.

Remark 0.37. Remark 0.35 can be interpreted as an instance of unstable Koszul duality over the
E1-operad, which we expand on now. Let X = (X0 → X1) be a 1-flagged ∞-groupoid. Fix a field
k of characteristic 0; consider the presentable ∞-category Stack(k) of (commutative) k-stacks. The

functor ∗ 〈Spec(k)〉−−−−−→ Stack(k), which selects the terminal (commutative) k-stack, uniquely extends as
a colimit preserving functor Spaces → Stack(k). In this way, each space, and each diagram among
spaces, determines a (commutative) k-stack, and a diagram of (commutative) k-stacks, respectively.
In particular, the given map X0 → X1 between spaces determines a map between (commutative) k-
stacks. Let us suppose that X0 ' ∗ is terminal. E1-deformations of this map between (commutative)
k-stacks is organized as a functor from local Artin E1-k-algebras. Koszul duality asserts that this
functor is represented by an augmented E1-algebra TE1

∗ X1. For formal reasons, this representing
augmented E1-k-algebra TE1

∗ X1 is the universal enveloping E1-algebra of the Lie algebra T∗X1,
which is the tangent space of the (commutative) k-stack X1 at its point. For other formal reasons,
this representing augmented E1-k-algebra TE1

∗ X1 is the group ring k[ΩX] := C∗(ΩX1;k) on the
group ΩX1 which fN(X) codifies, as it is equipped with its standard augmentation. Conversely, the
assumption that the map between spaces ∗ → X1 is 0-connective gives that the canonical map from
the Maurer–Cartan E1-k-stack,

MCk[ΩX1] =: Spec(k)/k[ΩX1]
'−−→ X1 ,

is an equivalence (as E1-k-stacks). Though less developed, we anticipate a similar interpretation of
Corollary 0.32 for the general n = 1 case (in which X0 is general). Specifically,

• the 1-groupoid fN(X), which we regard as an unstable version of an E1-algebroid over X0,
represents E1-deformations of the map X0 → X1 between (commutative) k-stacks;

• the connectivity of the map X0 → X1 between spaces ensures that X1, as an E1-k-stack, is
the Maurer–Cartan E1-k-stack of this E1-algebroid over X0.

Remark 0.38. We follow-up on Remark 0.37. Though even less developed, we speculate a further
interpretation of Corollary 0.32 for the case of general n. Specifically, for X = (X0 → · · · → Xn)
an n-flagged ∞-groupoid,

• the n-groupoid fN(X), which we regard as an unstable version of an E1-algebroid over an
E1-algebroid over ... over an E1-algebroid over X0, represents compatible E1-deformations
of each map Xi → Xi+1 in the given flag X;

• the connectivity of each map Xi → Xj ensures that Xn, as an En-k-stack, is the Maurer–
Cartan En-k-stack of this iterated E1-algebroid over X0.
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0.3. A conjecture. We state a conjecture, and some related problems, that are prompted by this
work. To state our conjecture we single out a class of diagrams in Catn.

Definition 0.39. A gaunt colimit diagram in Catn is a functor J. → Catn for which, for each

0 ≤ i ≤ n, the composite functor J. → Catn
(−)≤i−−−−→ Cati is a colimit diagram.

Example 0.40. For each 0 < i < p, the diagram

{i} //

��

{i < · · · < p}

��
{0 < · · · < i} // {0 < · · · < p}

is a gaunt colimit diagram in Cat1. More generally, for each Segal cover J. → Θn, the composite
functor

J. −→ Θn −→ Catn

is a gaunt colimit diagram.

Example 0.41. While the diagram in Cat1

{0 < 2} q {1 < 3} //

��

{0 < 1 < 2 < 3}

��
∗ q ∗ // ∗

is a colimit diagram, it is not a gaunt colimit diagram. Note, however, that the map from the
colimit of maximal ∞-subgroupoids to the maximal ∞-subgroupoid of ∗, ∞-groupoids(

{0 < 1 < 2 < 3}∼
∐

{0<2}∼q{1<3}∼
∗∼ q∗∼

)
' {−} q {+} −→ ∗ ,

is 0-connective, which is to say that it is surjective on path components.

Example 0.42. Consider the ordinary 1-category E(c1) corepresenting an isomorphism. Consider
the functor ∆/E(c1) := ∆ ×

Cat1
(Cat1)/E(c1) → ∆ ↪→ Cat1 from the slice category. Consider its

terminal extension
(∆/E(c1))

. −→ Cat1 .

While this functor is a colimit diagram, it is not a gaunt colimit diagram. More generally, for each
0 < i ≤ n, consider the strict n-groupoidification E(ci) of the i-cell. While the composite functor

(Θn/E(ci))
. −→ Θn ↪→ Catn

is a colimit diagram, it is not a gaunt colimit diagram.

Remark 0.43. Heuristically, a colimit diagram J. → Catn is gaunt if it does not generate invertible
i-morphisms for any i.

We make the following.

Conjecture 0.44. The restricted Yoneda functor

fCatn
(4)−−−→ PShv(Catn)

is fully faithful, with image consisting of those presheaves that carry (the opposites of) gaunt colimit
diagrams to limit diagrams.

Remark 0.45. We reflect on the statement of Conjecture 0.44. By definition, the ∞-category
Catn is presentable. Therefore, the image of the Yoneda functor Catn → PShv(Catn), which is
fully faithful, consists of those presheaves that carry (the opposites of) all colimit diagrams to limit
diagrams.

9



Problem 0.46. Identify checkable criteria for when a colimit diagram J. → Catn is in fact a gaunt
colimit diagram.

Problem 0.47. Let 0 ≤ i ≤ n. For ∂ci → C a functor to a finite gaunt n-category, give an explicit
description (for instance as a presheaf on Θn, or even as a presheaf on finite gaunt n-categories) of
the pushout (∞, n)-category

C q
∂ci

ci .

Acknowledgements. We are grateful to Jacob Lurie, for his contributions to foundational topos
theory, and to Charles Rezk, for his careful and operationally practical exposition of (∞, n)-
categories.

1. Comparing Segal sheaves and flagged higher categories

We establish adjunctions connecting the ∞-categories Shv(Θn) and fCatn. In doing so, we intro-
duce some interpolating ∞-categories.

1.1. The adjunction. Recall the sequence of functors (2); for each 0 ≤ i ≤ j ≤ n, denote that
functor as

(6) ι := ιij : Θi ↪→ Θj

where the subscripts are omitted if the indices are understood from context. The sequence (2) of
fully faithful right adjoint functors is selected by a functor:

Θ• : [n]
〈(2)〉−−−→ Cat , i 7→ Θi .

Postcomposing this functor with the functor PShv : Cat→ PrL, to presentable∞-categories and left

adjoint functors among them, results in a functor [n]
Θ•−−→ Cat

PShv−−−→ PrL. The unstraightening of
this functor is an ∞-category over [n],

(7) PShv(Θ•) −→ [n] ,

which is both a coCartesian fibration and a Cartesian fibration.

Remark 1.1. Let 0 ≤ i ≤ j ≤ n. Consider the morphism c1
〈i≤j〉−−−→ [n]. The coCartesian mon-

odromy functor of (7) over the morphism is the unique colimit preserving functor ι! : PShv(Θi) →
PShv(Θj) extending the composite functor Θi ↪→ Θj ↪→ PShv(Θj). The Cartesian monodromy
functor of (7) over this same morphism is the functor PShv(Θi)← PShv(Θj) : ι∗ given by pullback
along Θi ↪→ Θj . Notice that both of these monodromy functors preserve colimits, and that the
coCartesian monodromy functor is left adjoint to the Cartesian monodromy functor.

Consider the ∞-category of sections of (7):

Γ
(
PShv(Θ•)

)
:= Fun/[n]

(
[n],PShv(Θ•)

)
.

Explicitly, an object of Γ
(
PShv(Θ•)

)
is, for each 0 ≤ i ≤ n, a presheaf Fi ∈ PShv(Θi), together

with, for each 0 < i ≤ n, a morphism ι!Fi−1 → Fi between presheaves on Θi. Now, because n ∈ [n]
is a final object, Cartesian monodromy of the unique morphisms in [n] to this final object define a
functor from the fiber over n to this ∞-category of sections:

(8) PShv(Θn) −→ Γ
(
PShv(Θ•)

)
.

This functor (8) is fully faithful, and its image consists of the Cartesian sections, which are those
sections that carry morphisms to (7)-Cartesian morphisms. Precomposing with the Yonda functor
Θn ↪→ PShv(Θn) determines the solid diagram among ∞-categories:

Θn
ff

Yoneda
//

ff

��

PShv(Θn)
ff

(8)
//

iduu

Γ
(
PShv(Θ•)

)
fNpp

PShv(Θn)

10



Left Kan extensions define the fillers in this diagram, which is indeed a commutative diagram
because each of the solid arrows is a fully faithful functor. From the universal property of the
Yoneda functor, the inner filler is the identity functor on PShv(Θn), as indicated. As is always
the case for left Kan extensions through a Yoneda functor, the outer filler is the restricted Yoneda
functor. (We give this left Kan extension the same notation as (4) because it extends that functor,
as we will see.) From the universal property of left Kan extensions, the resulting triangle among
presentable ∞-categories

Γ
(
PShv(Θ•)

)

id

��

fNuu
Θn

//

..

00

PShv(Θn)
id //

(8)

..

(8)

00

PShv(Θn)

(8)

))

⇒

Γ
(
PShv(Θ•)

)
lax-commutes, as indicated. By construction, the resulting outer lax-commutative triangle among
∞-categories is, in fact, a commutative triangle. From the universal property of the Yoneda functor
Θn → PShv(Θn) as a colimit completion, it follows that the second-to-outer lax-commutative
triangle is also, in fact, a commutative triangle. This concludes the construction of an adjunction

(9) (8) : PShv(Θn) � Γ
(
PShv(Θ•)

)
: fN .

Explicitly, the left adjoint evaluates on a presheaf F ∈ PShv(Θn) as the section i 7→ F|Θop
i

; in the
case that F is represented by an object T ∈ Θn, we implement the other notation T≤• in place of
F|Θop

•
. Explicitly, the right adjoint evaluates on a section F• as the presheaf T 7→ MapΓ(T≤•,F•),

whose values are spaces of morphisms in the ∞-category Γ
(
PShv(Θ•)

)
.

Inspecting the definition of the restricted Yoneda functor fN : Γ
(
PShv(Θ•)

)
→ PShv(Θn), as n

varies, reveals the following.

Observation 1.2. For each 0 ≤ i ≤ j ≤ n, the diagram among ∞-categories

PShv(Θj)

��

Γ
(
PShv(Θ•≤j)

)
��

fNoo

PShv(Θi) Γ
(
PShv(Θ•≤i)

)fNoo

canonically commutes.

1.2. Restricting the adjunction. We now show that the adjunction (9) restricts to Segal objects.
Recall the ∞-category of (7). Consider the full ∞-subcategories

(10) PShv(Θ•) ⊃ Shv(Θ•) ⊃ Shvunv(Θ•)

consisting of those pairs
(
i ∈ [n],F ∈ PShv(Θi)

)
for which Fi ∈ Shv(Θi), and for which Fi ∈

Shvunv(Θi), respectively.

Lemma 1.3. In the commutative diagram among ∞-categories,

PShv(Θ•)

))

Shv(Θ•)

��

oo Shvunv(Θ•)

uu

oo

[n] ,

each of the vertical functors is both a coCartesian fibration and a Cartesian fibration, and each of the
horizontal functors is fully faithful and preserves coCartesian morphisms and Cartesian morphisms
over [n].
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Proof. By Definition 0.5, both Segal covers and univalence diagrams are, in particular, limit dia-
grams in Θn. By direct inspection, for each 0 ≤ i ≤ j ≤ n, the fully faithful functor Θi ↪→ Θj carries
Segal covers to Segal covers and carries univalence diagrams to univalence diagrams. From these
two points, it follows that the adjunction ι! : PShv(Θi) � PShv(Θj) : ι∗ restricts as an adjunction

ι! : Shv(Θi) � Shv(Θj) : ι∗ ,

which further restricts as an adjunction

ι! : Shvunv(Θi) � Shvunv(Θj) : ι∗ ,

The lemma follows. �

For each 0 ≤ i ≤ n, via Bousfield localization, the fully faithful inclusion between presentable
∞-categories, Shvunv(Θi) ↪→ Shv(Θi), is a right adjoint:

(11) (−)̂unv : Shv(Θi) � Shvunv(Θi) .

The left adjoint is univalent-completion.

Lemma 1.4. The fully faithful inclusion

Shv(Θ•)←↩ Shvunv(Θ•)

is a right adjoint functor. Its left adjoint functor lies over [n], and the adjunction is given on fibers
over i ∈ [n] as the Bousfield localization (−)ûnv : Shv(Θi) � Shvunv(Θi) implementing univalent-
completion.

Proof. The existence of a left adjoint is a condition on the given fully faithful functor. Because
the given fully faithful functor is a coCartesian functor between coCartesian fibrations over [n], the
result is proved upon showing that the following two points.

(1) For each 0 ≤ i ≤ n, the functor between fibers over i is a right adjoint in an adjunction,

Li : Shv(Θi) � Shvunv(Θi) .

(2) For each 0 < i ≤ n, the diagram

Shv(Θi−1)

Li−1

��

��

⇓ Shvunv(Θi−1)

��
Shv(Θi)

Li // Shvunv(Θi)

lax-commutes.

The first point is exactly the adjunction (11), in which Li = (−)̂unv is univalent-completion. The fully
faithful functor Shvunv(Θi−1) ↪→ Shvunv(Θi) is a left adjoint, with right adjoint given by restriction:
C 7→ C<i. Therefore, the sought lax-commutative diagram is implemented from the commutativity
of the diagram involving right adjoints to the sought lax-commutative diagram:

Shv(Θi−1) Shvunv(Θi−1)oo

Shv(Θi)

OO

Shvunv(Θi)oo

OO

�

Taking sections, Lemma 1.4 has the following useful consequence.
12



Corollary 1.5. The fully faithful inclusion

Γ
(
Shv(Θ•)

)
←↩ Γ

(
Shvunv(Θ•)

)
is a right adjoint functor. Its left adjoint carries a section F• to the section (F•)ûnv, whose value on
i ∈ [n] is the univalent-completion of the Segal sheaf Fi ∈ Shv(Θi).

Remark 1.6. Verifying that a presheaf on Θn satisfies the Segal condition, as defined in Defini-
tion 0.5, can be reduced to a simpler problem, as we now explain. Each closed morphism in Θn

is a monomorphism. Therefore, for each T ∈ Θcls
n , the overcategory Θcls

n/T is a a poset. Inspecting

the definition of the category Θn, this poset Θcls
n/T is, in fact, finite. Therefore, each colimit in Θcls

n

can be expressed as a finite iteration of pushouts. It follows that a presheaf F ∈ PShv(Θn) is Segal
if and only if it carries (the opposites of) pushout diagrams in Θcls

n to pullback diagrams among
spaces. We make implicit use of this reduction as we proceed.

Lemma 1.7. The adjunction (9) restricts as an adjunction

(12) (8) : Shv(Θn) � Γ
(
Shv(Θ•)

)
: fN .

Proof. Because the asserted restriction is to fully faithful∞-subcategories in the adjunction (9), we
need only show that the left and the right adjoint functors restrict as desired.

From its definition, Lemma 1.3 gives that the functor (8) restricts as a functor

(8) : Shv(Θn) � Γ
(
Shv(Θ•)

)
,

which is necessarily fully faithful.
It remains to prove that fN restricts likewise. Let F• ∈ Γ

(
Shv(Θ•)

)
. We must show, then, that the

presheaf fN(F•) : Θop
n → Spaces carries (opposites) of Segal covers to limit diagrams. By definition of

fN as a restricted Yoneda functor, this is implied by the functor Θn → fCatn carrying Segal covers
to colimit diagrams. By definition of a Segal cover, this is implied by the functor Θcls

n → fCatn
preserving colimit diagrams. By definition of fCatn as a full ∞-subcategory of Fun([n],Catn), this

is implied by each of the forgetful functors (−)≤i : Θcls
n → Catn

forget−−−→ Cati preserving colimit
diagrams.

Now let T• : J. → Θcls
n be a colimit diagram. Denote the value on the cone point as T := T∗ ∈ Θn.

We must show that the composite functor (T•)≤i : J
. → Cati is a colimit diagram. In general, for

each k, the full subcategory of Θcls
k consisting of the cells strongly generates; also, by definition, the

functor Θk ↪→ Catk preserves such colimit diagrams. We can therefore reduced to the case that
the functor J ' E(T ) ↪→ Θcls

n/T is the inclusion of the full subcategory E(T ) ⊂ Θcls
n/T consisting of

those closed morphisms Tj → T for which Tj ' ck is a k-cell for some 0 ≤ k ≤ n. This, a priori,
∞-category E(T ) is in fact a finite poset (see Remark 1.6). The lemma is proved once we establish
the following sequence of equivalences among (∞, i)-categories:

colim
C∈E(T )

C≤i
'←−− colim

C∈E(T )
colim

C′∈E(C)≤i

C ′

'←−− colim
C′∈E(T )≤i

C ′

'−−→ T≤i .

From the universal property of the right adjoint functor (−)≤i : Catn → Cati, for each S ∈ Θn,
there is a canonical identification as a colimit:

S≤i ' colim
(
Θi/S → Θi ↪→ Cati

)
.

Consider the subcategory Θcls
i/S ⊂ Θi/S consisting of the closed morphisms to S and closed mor-

phisms among them. Via the active-closed factorization system on the category Θi, the inclusion of
this subcategory is a final functor. Consider the full subcategory E(S)≤i ⊂ E(S) ⊂ Θcls

i/S consisting
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of those (C → S) for which C ' ck is a k-cell for some 0 ≤ k ≤ i. Now, for each k, the full subcat-
egory of Θcls

k consisting of the cells strongly generates; also, by definition, the functor Θk ↪→ Catk
preserves such colimit diagrams. We conclude from these observations an identification

S≤i ' colim
(
E(S)≤i ↪→ Θcls

i/S ↪→ Θi/S → Θi ↪→ Cati
)
.

Applying this to S = T gives the final equivalence in the above string. Notice that the assignments
S 7→ E(S) and S 7→ E(S)≤i each evidently extend as a functors Θcls

n → Poset/Θcls
n

. This gives the first
of the equivalences. The second equivalence follows from Quillen’s Theorem A, using the following
observation.

Let C ′ → T be a closed morphism in Θn from an i-cell. Then the poset of factorizations of
this closed morphism through a closed morphism C → T from a cell, has an initial object.

Finally, the composition of this string of equivalence is evidently the canonical morphism we intended
to show is an equivalence. �

Concatenating Corollary 1.5 and Lemma 1.7 results in the composite adjunction

(13) (−|Θop
•

)̂unv : Shv(Θn) � Γ
(
Shv(Θ•)

)
� Γ

(
Shvunv(Θ•)

)
: fN .

Unwinding definitions reveals the next observation.

Observation 1.8. There is a canonical fully faithful functor between ∞-categories:

(14) fCatn ↪→ Γ
(
Shvunv(Θ•)

)
.

The image consists of those sections C• = (C0 → C1 → · · · → Cn) for which, for each 0 ≤ i ≤ j ≤ n,
the functor Ci → Cj between (∞, j)-categories is i-connective.

The proof of the next result occupies §3.1.

Lemma 1.9. The value of the left adjoint of the adjunction (13) on a Segal sheaf F ∈ Shv(Θn) lies
in the image of the fully faithful functor of Observation 1.8:

(F|Θop
•

)ûnv ∈ fCatn .

Through Observation 1.8, Lemma 1.9 has the following consequence.

Corollary 1.10. The adjunction (13) restricts as an adjunction

(15) (−|Θop
•

)ûnv : Shv(Θn) � fCatn : fN .

1.3. Explicating the adjunction. After Corollary 1.10, our main result (Theorem 0.26) is implied
by showing that both the unit and the counit transformations of the adjunction (15) are equivalences.
So we explicate the values of left and right adjoints, as well as the unit and the counit, of the
adjunction (15).

1.3.1. The left adjoint. The value of the left adjoint (−|Θop
•

)̂unv of the adjunction (13) on a Segal

sheaf F ∈ Shv(Θn) is the section (F|Θop
•

)̂unv of the functor Shvunv(Θ•)→ [n] that is the assignment

[n] 3 i 7→ (F|Θop
i

)̂unv ∈ Shvunv(Θi) ,

which is the univalent completion of the restriction F|Θop
i
∈ Shv(Θi).

1.3.2. The right adjoint. The value of the right adjoint fN of the adjunction (13) on a section
C• ∈ Γ

(
Shvunv(Θ•)

)
is the Segal sheaf fN(C•) ∈ Shv(Θn) that is the assignment

Θop
n 3 T 7→ MapΓ≤n

(T≤•,C•) ∈ Spaces ,

which is the space of morphisms in Γ
(
Shvunv(Θ•)

)
from T≤• = (T≤0 → T≤1 → · · · → T≤n−1 → T )

to C•. The next result (Corollary 1.12) makes the values of the Segal sheaf fN(C•) more explicit.
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Observation 1.11. For C• and D• sections of the functor PShv(Θ•) → [n], the canonical square
among spaces of morphisms

MapΓ≤n
(C•,D•) //

��

MapPShv(Θn)(Cn,Dn)

��
MapΓ<n

(C•<n,D•<n) // MapPShv(Θn)(Cn−1,Dn)

is a pullback.

Proof. The coCartesian monodromy functors of the coCartesian fibration PShv(Θ•)→ [n] are given
by left Kan extensions along fully faithful functors. Therefore, these coCartesian monodromy func-
tors are fully faithful. These coCartesian monodromy functors thusly define a fully faithful functor
to the fiber over the final object n ∈ [n]:

Γ
(
PShv(Θ•)

)
↪→ Fun

(
[n],PShv(Θn)

)
=: PShv(Θn)[n] .

The canonical functor [n − 1] q
{n−1}

{n − 1 < n} → [n] between ∞-categories is an equivalence

from the pushout. Consequently, for X an ∞-category, and for x•, y• ∈ Fun([n],X) =: X[n] two
functors [n]→ X, the canonical square among spaces of morphisms

X[n](x•, y•) //

��

X(xn, yn)

��
X[n−1](x•<n, y•<n) // X(xn−1, yn)

is a pullback. Apply this to the case X = PShv(Θn). �

Corollary 1.12. Let C• be a section of the functor PShv(Θ•) → [n]. Let T ∈ Θn. There is a
canonical pullback diagram among spaces:

fN(C•)(T ) //

��

Cn(T )

��
fN(C•<n)(T<n) // Cn(T<n) .

Alternatively, there is a canonical limit diagram among spaces:

fN(C•)(T )

tt xx �� '' ++
C0(T≤0)

%%

C1(T≤1)

&&��

· · ·

''��

Cn−1(T≤n−1)

''��

Cn(T )

��
C1(T≤0) C2(T≤1) Cn−1(T≤n−2) Cn(T≤n−1).

Corollary 1.12 makes apparent the following.

Observation 1.13. Let 0 ≤ i ≤ n. Let F• be a section of the functor PShv(Θ•)→ [n]. Restricting
this section over [i] = {0 < · · · < i} ⊂ [n] determines the section F•≤i of PShv(Θ•)→ [i]. There is
a canonical equivalence between presheaves on Θi:

fN(F•≤i) ' fN(F•)|Θop
i
.
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1.3.3. The unit. The unit of the adjunction (13) evaluates on each Segal sheaf on Θn as the
morphism between presheaves

unit : F −→ fN
(
(F|Θop

•
)̂unv

)
whose value on T ∈ Θn is described inductively (via Observation 1.13) through Corollary 1.12 as
the square among spaces

(16) F(T ) //

��

Fûnv(T )

��
F(T<n)

induction // fN
(
(F|Θ•<n

)̂unv

)
// Fûnv(T<n) .

Without compressing this description via induction, the unit transformation can be described
through Corollary 1.12 as the canonical diagram among spaces
(17)

F(T )

rr uu �� ))
(F|Θop

0
)̂unv(T≤0)

((

(F|Θop
1

)̂unv(T≤1)

((
��

(F|Θop
n−1

)̂unv(T≤n−1)

))
��

(F|Θop
n

)̂unv(T )

��
(F|Θop

1
)̂unv(T≤0) . . . (F|Θop

n
)̂unv(T≤n−1).

The proof of the next result occupies §1.3.3.

Lemma 1.14. For each Segal sheaf F on Θn, and for each T ∈ Θn, both of the diagrams among
spaces (16) and (17) are limit diagrams.

1.3.4. The counit. The counit of the adjunction (13) evaluates on each section C• of the functor
Shvunv(Θop

• )→ [n] as the morphism between sections

counit : (fN(C•)|Θop
•

)̂unv −→ C•

whose value on i ∈ [n] is described, through Observation 1.13, as the canonical functor between
(∞, i)-categories (

fN(C•≤i)
)

ûnv
−→ Ci

from the univalent-completion of the Segal sheaf fN(C•≤i) on Θi that evaluates on each T ∈ Θi as
the canonical map

(18) fN(C•≤i)(T ) −→ Ci(T )

as in Corollary 1.12.

Observation 1.15. Let C be a flagged (∞, n)-category. Through the fully faithful functor (14),
regard C as a section of the functor Shvunv(Θ•) → [n]. The connectivity assumptions on each
Ci → Cj ensure that, for each 0 ≤ i ≤ n and each T ∈ Θi, the map (18) between spaces is surjective
(on path components). From the 2-out-of-3 property for surjections, it follows that the counit
evaluates as a surjection

counit :
(
fN(C•≤i)

)
ûnv

(T ) −→ Ci(T )

is surjective (on path components).

The proof of the next result occupies §1.3.4.
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Lemma 1.16. Let C ∈ fCatn be a flagged (∞, n)-category. For each 0 ≤ i ≤ n, the canonical
morphism between Segal sheaves on Θi

counit : fN(C•≤i) −→ Ci

witnesses a univalent-completion: (fN(C•≤i))ûnv
'−−→ Ci.

2. Univalence completion

We establish a formula for univalent-completion. Section §2.1 establishes the formula for univalent-
completion. Section §2.2 justifies that this formula indeed implements univalent-completion.

2.1. The formula. We establish the somewhat explicit formula for univalent-completion.
Notation 0.4 is an instance of the following.

Definition 2.1. The functor

(19) E : Θn −→ PShv(Θn)

carries an object T = [p](T1, . . . , Tp) ∈ Θn to the presheaf of sets

E(T ) : S = [q](S1, . . . , Sq) 7→
{(
{0, . . . , q} f−→ {0, . . . , p} ,

(
gij ∈ E(Ti)(Sj)

)
0<i≤p; j∈Hull{f(i−1),f(i)}

)}
.

Each value of the functor (19) is an explicit description of strict n-groupoid-completion, as we
now observe.

Observation 2.2. The functor (19) is identical to the composite functor

E : Θn ↪→ Catstrict
n

n-groupoid completion−−−−−−−−−−−−−−→ Gpdstrict
n ↪→ Catstrict

n
nerve−−−−→ PShv(Θn) ,

which we briefly explain. Here, Gpdstrict
n ⊂ Catstrict

n is its full (2, 1)-subcategory consisting of those

categories enriched in Gpdstrict
n−1 for which each (1-)morphism is invertible. The first functor is the

fully faithful functor of Remark 0.3. The second functor is the left adjoint to the inclusion of the
strict n-groupoids. The third functor is the inclusion of the strict n-groupoids. The fourth functor
is the nerve functor of Remark 0.3.

Observation 2.2 yields the following.

Observation 2.3. The functor (19) factors through n-groupoids, and in particular Segal sheaves:

E : Θn
(19)−−→ nGpd ⊂

Obs 0.31
Shv(Θn).

Using the adjoint functor theorem, there is a Bousfield localization

(20) Shv(Θn) � Shvunv(Θn) , F 7→ Fûnv .

We now give a somewhat explicit formula for this left adjoint, which is inspired the classifying
diagram construction of [Re1], which is elaborated in [JT]. Consider the composite functor
(21)

L : PShv(Θn)
F 7→F(−×E(•))−−−−−−−−−→ PShv(Θn×Θn)

H 7→|H|•−−−−−−→ PShv(Θn) , F 7→ L(F) :=
(
T 7→

∣∣F(T×E(•))|•
)
.

The initial functor ∗ 〈[0]〉−−−→ Θop
n determines the initial functor Θop

n = Θop
n ×∗ → Θop

n ×Θop
n . This, in

turn, determines the natural transformation

(22) id −→ L , F 7→
(
F = F(−× E([0]))→

∣∣F(−× E(•))|• =: L(F)
)
.

The proof of the next result occupies §2.2.
17



Proposition 2.4. There is a canonical commutative diagram among ∞-categories:

Shv(Θn)
(−)ûnv //

��

Shvunv(Θn)

��
PShv(Θn)

L // PShv(Θn),

which extends as a commutative diagram among ∞-categories:

c1 × Shv(Θn)
unit //

��

Shv(Θn)

��
c1 × PShv(Θn)

(22) // PShv(Θn).

In other words, for each Segal sheaf F ∈ PShv(Θn), and for each T ∈ Θn, there is a canonical
identification between spaces: ∣∣Map

(
T × E(•),F

)∣∣ '−−→ Fûnv(T ) ;

with respect to this identification, the value of the unit of the adjunction (20) on F evaluates on
T ∈ Θn as the canonical map between spaces

F(T ) ' Map
(
T × E([0]),F

)
−→

∣∣Map
(
T × E(•),F

)∣∣ ' Fûnv(T ) .

2.2. The formula is correct. We prove Proposition 2.4. This result is proved upon establishing
the following features of the functor L of (21) and the natural transformation id→ L of (22).

(1) Should F carry (the opposites of) Segal covers to limit diagrams, then the presheaf L(F)
also carries (the opposites of) Segal covers to limit diagrams. In other words, there is a
factorization of the restriction:

Shv(Θn)
L //

��

Shv(Θn)

��
PShv(Θn)

L // PShv(Θn).

(2) Should F carry (the opposites of) Segal covers to limit diagrams, then the presheaf L(F)
carries (the opposites of) univalence diagrams to limit diagrams. In other words, there is a
further factorization of the restriction:

Shv(Θn)
L //

L &&

Shvunv(Θn)

ww
PShv(Θn) .

(3) Should F carry (the opposites of) Segal covers and univalence diagrams to limit diagrams,
then the natural transformation id → L evaluates as an equivalence. In other words, the
lax-commutative diagram

Shvunv(Θn)

id

��

''

⇓ Shvunv(Θn)

PShv(Θn)

L

77

.

is, in fact, a commutative diagram.

18



• Proof of (1): Let F ∈ Shv(Θn) be a Segal sheaf. Let

T 0 //

��

T+

��
T− // T

be a pushout diagram on Θcls
n . This diagram determines the diagram in Fun

(
Θn,PShv(Θn)

)
:

T 0 × E(•) //

��

T+ × E(•)

��
T− × E(•) // T × E(•).

Through Observation 2.2, using that the Segal condition is closed under products of presheaves,
this is in fact a diagram in Fun

(
Θn,Shv(Θn)

)
⊂ Fun

(
Θn,PShv(Θn)

)
. Established in [Re2],

products in Shv(Θn) distribute over colimits. Therefore the above diagram is a pushout
diagram in Fun

(
Θn,Shv(Θn)

)
. Applying the Segal sheaf F results in the pullback diagram

in Fun
(
Θop
n , Spaces

)
:

(23) F
(
T × E(•)

)
//

��

F
(
T+ × E(•)

)
��

F
(
T− × E(•)

)
// F
(
T 0 × E(•)

)
.

Because it is the case for each E(•), this diagram is in fact a diagram in the full ∞-
subcategory nGpd ⊂ Fun(Θop

n , Spaces) of Observation 0.31. Because this full∞-subcategory
is closed under limits, the above diagram is a pullback diagram in nGpd. The functor
| − | : nGpd→ Spaces carries the above diagram to a diagram among spaces

(24) L(F)(T ) :=
∣∣F(T × E(•)

)∣∣ //

��

∣∣F(T+ × E(•)
)∣∣ =: L(F)(T+)

��
L(F)(T−) :=

∣∣F(T− × E(•)
)∣∣ //

∣∣F(T 0 × E(•)
)∣∣ =: L(F)(T 0).

This proof that L(F) is a Segal sheaf whenever F is a Segal sheaf is complete once we
show (24) is a pullback among spaces.

Restricting the diagram (23) in PShv(Θn) along the standard diagonal functor ∆×n →
Θn determines a pullback diagram

(25) G
(
[•], . . . , [•]

)
//

��

G+

(
[•], . . . , [•]

)
��

G−
(
[•], . . . , [•]

)
// G0

(
[•], . . . , [•]

)
in PShv(∆×n). Because the diagram (23) belongs to nGpd, this restricted diagram (25)
belongs to the∞-category Gpdn[S] of groupoid objects in the∞-category Gpdn−1[S], where
Gpd1[S] = 1Gpd[S] is the ∞-category of groupoid objects in Spaces. Now, let P :=

19



(
[p1], . . . , [pn−1]

)
∈ ∆n−1. Consider the functor ∆

(〈P 〉,id)−−−−−→ ∆×n−1 × ∆ = ∆×n. Con-
sider the restriction

(26) GP (•) //

��

GP+(•)

��
GP−(•) // GP0 (•)

of the diagram (25) along this functor. This diagram (26) is a pullback diagram among
simplicial spaces. Because F ∈ Shv(Θn) is a Segal sheaf, inspecting the standard diagonal
functor ∆×n → Θn gives that the vertical arrows in the pullback diagram (26) are Cartesian
fibrations as well as coCartesian fibrations among Segal sheaves on ∆. Quillen’s Theorem
B (of [AF]) applied to (26) grants that the resulting diagram among spaces

(27)
∣∣GP (•)

∣∣ //

��

∣∣GP+(•)
∣∣

��∣∣GP−(•)
∣∣ //

∣∣GP0 (•)
∣∣

is a pullback. Proceeding by induction on n gives that the diagram among spaces

(28)
∣∣G([•], . . . , [•])∣∣ //

��

∣∣G+

(
[•], . . . , [•]

)∣∣
��∣∣G−([•], . . . , [•])∣∣ //

∣∣G0

(
[•], . . . , [•]

)∣∣
is a pullback diagram. Now, there is a canonical morphism among square diagrams in Spaces
from (28) to diagram (24). By direct examination using Quillen’s Theorem A, the diagonal
functor ∆×n → Θn is final. It follows that this comparison morphism from (28) to (24) is
an equivalence between square diagrams. Finally, because (28) is a pullback diagram, then
so too is (24).

• Proof of (2): Let F ∈ Shv(Θn) be a Segal sheaf. By Definition 0.5 of the univalence
condition, we must show, for each 0 ≤ i < n, that the canonical map between spaces

(29) L(F)(ci) −→ L(F)
(
ci o E(c1)

)
is an equivalence. Consider the diagram in Shv(Θn):

∂ci × E(ci+1)

%%

//

��

ci × E(ci+1)

��

zz
∂ci //

��

ci

��
∂ci // ci

∂ci

99

// ci o E(c1).

dd

In this diagram, the outer square is a pushout, and the inner square is trivially a pushout.
Furthermore, the diagonal arrows in this square are carried to equivalences by the localiza-
tion Shv(Θn)→ Shvunv(Θn). Applying the Segal sheaf L(F) to this diagram results in the
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diagram among spaces,

L(F)(ci)

((

//

��

L(F)(ci)

��

vv
L(F)

(
ci o E(c1)

)
//

��

L(F)
(
ci × E(ci+1)

)
��

L(F)
(
∂ci × E(ci+1)

)
// L(F)(∂ci)

L(F)(∂ci)

66

// L(F)(∂ci),

hh

in which both the inner and the outer squares are pullback squares. Therefore, the down-
rightward arrow, which is (29), is an equivalence provided each of the down-leftward arrow
and the up-rightward arrow is an equivalence. This is implied by showing, for each S, T ∈
Θn, that the canonical map between spaces,

L(F)(T ) :=
∣∣F(T × E(•)

)∣∣ −→ ∣∣F(T × E(S)× E(•)
)∣∣ =: L(F)

(
T × E(S)

)
,

is an equivalence. So fix S, T ∈ Θn.
As established in the Proof of (1) above, the presheaf GT (•) := F

(
T × E(•)

)
on Θn

belongs to the full∞-subcategory nGpd ⊂
Obs 0.31

PShv(Θn). Inspecting the Definition 2.1 of

the functor E : Θn → nGpd, its left Kan extension to Catstrict
n preserves products. Therefore

E(S × •) = E(S)× E(•). We conclude an identification of the exponential presheaf,

GT (•)S := GT (S × •) = F
(
T × E(S × •)

)
= F

(
T × E(S)× E(•)

)
,

and that this is also an n-groupoid object in Spaces. So it remains to establish the following
general claim:

(†): Let Θop
n

G−→ Spaces be an n-groupoid object. Let S ∈ Θn be an object. Consider
the morphism G → GS between n-groupoid objects induced by the unique morphism
S → ∗ in Θn. The resulting map between colimits

(30) |G| −→ |GS |

is an equivalence between spaces.
Consider the morphism s : ∗ → S that selects the unique object for which there are no
non-identity morphisms to it in the n-category S. This morphism is a section of the unique

morphism S → ∗ in Θn. This determines a retraction |GS | s∗−→ |G|, for which (30) is a
section. The claim (†) then follows upon showing the composite map among spaces

|GS | s∗−−→ |G| (30)−−−−→ |GS |

is equivalent to the identity map. We do this representably. More precisely, we construct a
filler among strict n-categories

(31) S
∼= //

!

��

∗ × S 0×id // cn × S

HS

��

∗ × S1×idoo S
∼=oo

id
uu∗ s // S .
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Such a filler determines a filler in the diagram among presheaves on Θn:

GS
0 // cn × GS

��

GS
1oo

G

!∗

OO

GS
s∗

oo
id

77

.

The colimit functor | − | : PShv(Θn) → Spaces preserves products, and carries cn to ∗.
Applying this colimit functor to the above diagram results in the sought equivalence between
the composite map |GS | → |G| → |GS | and the identity map.

So we are left to construct a filler, HS : cn × S → S, in the diagram (31). We do this for
all S ∈ Θn, by induction on n. The base case that n = 0 is tautological. So assume n > 0.
Write S = [p](S1, . . . , Sp). If p = 0, then S = ∗ is terminal and there is a unique HS . So
assume p > 0. Because S is a colimit of its maximal Segal cover, it is enough to define HS

on each term of this colimit, compatibly. So the functor HS is determined by declaring,
for each consecutive morphism cn → S in Θn, what is the composite functor among strict
n-categories:

HS ◦ (id, f) : cn
(id,f)−−−−→ cn × S

HS−−−→ S .

So let cn
f−→ S be a consecutive morphism in Θn that is injective on sets of objects. So f

evaluates on objects as f(0) = i−1 and f(1) = i for some 0 < i ≤ p, and f evaluates on strict

(n− 1)-categories of morphisms as Homf (0, 1) : Homcn(0, 1) = cn−1
fi−→ Si = HomS(i− 1, i)

for some consecutive morphism fi : cn−1 → Si in Θn−1. We declare the composite functor
among strict n-categories

HS ◦ (id, f) : cn
(id,f)−−−−→ cn × S

HS−−−→ S

as follows. On objects, this composite functor is

HS ◦ (id, f)(0) = 0 and HS ◦ (id, f)(1) = f(1).

On (n− 1)-categories of morphisms, this composite functor,

Homcn(0, 1) = cn−1

(id,fi)−−−−−→ cn−1 × Si
= Homcn(0, 1)× HomS

(
f(0), f(1)

)
HomHS

(0,1)
−−−−−−−−−→ HomS

(
0, f(1)

)
=
∏

0<j≤i

Sj ,

is defined by declaring the composition

cn−1
(id,fi)−−−−−→ cn−1 × Si

HomHS
(0,1)

−−−−−−−−−→
∏

0<j≤i

Sj
pr−−→ Sj

to be the following. If j < i, this latter composition is constant at the object 0 ∈ Sj . If
j = i, this latter composition is HSi

◦ (id, fi); note that, because Si ∈ Θn−1, this has been
defined by induction on n. This completes the construction of HS , for each S ∈ Θn, and
therefore completes the proof of (2).

• Proof of (3): Let F ∈ Shvunv(Θn) be a univalent Segal sheaf. We must show the morphism
between univalent Segal sheaves

(32) (22) : F −→
∣∣F(−× E(•)

)∣∣=: L(F)

is an equivalence. Let S, T ∈ Θn. Consider the projection morphism T × E(S) → T in
the ∞-category Shv(Θn). In the case that T = ∗, this is the case nearly by definition of
the univalence condition. The case of general T follows from this T = ∗ case because the
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Bousfield localization Shv(Θn) → Shvunv(Θn) preserves products (as established in [Re2]).
Using that F is univalent, the resulting map between spaces

F(T ) −→ F
(
T × E(S)

)
is an equivalence. It follows that the morphism (32) is an equivalence, as desired.

3. Using the formula to prove the main result

We use the formula of Proposition 2.4 for univalent-completion to prove Theorem 0.26. Specif-
ically, we use that formula to prove Lemma 1.9, Lemma 1.14, and Lemma 1.16, then draw Theo-
rem 0.26 as a consequence.

3.1. Proof of Lemma 1.9. Recall from Proposition 2.4 the explicit description of the functor
(−|Θop

•
)̂unv : Shv(Θn) → Γ

(
Shvunv(Θ•)

)
. Through that description, the problem is to show that,

for each Segal sheaf F ∈ Shv(Θn), and for each 0 ≤ i ≤ j ≤ n, the canonical functor between
(∞, j)-categories

(F|Θop
i

)̂unv −→ (F|Θop
j

)̂unv

is i-connective. So fix F ∈ Shv(Θn) and 0 ≤ i ≤ j ≤ n. By Definition 0.9 of i-connective, we must
show that, for each 0 ≤ k ≤ i, the solid diagram among (∞, j)-categories

(33) ∂ck //

��

(F|Θop
i

)̂unv

��
ck //

77

(F|Θop
j

)̂unv

can be filled. So fix such a 0 ≤ k ≤ i.
Consider the canonical diagram among spaces of functors:

(34) Catj
(
ck, (F|Θop

i
)̂unv

)
//

��

Catj
(
ck, (F|Θop

j
)̂unv

)
��

Catj
(
∂ck, (F|Θop

i
)̂unv

)
// Catj

(
∂ck, (F|Θop

j
)̂unv

)
.

Unwinding definitions, the problem of finding a filler in (33) is identical to showing the resulting
map to the pullback

Catj
(
ck, (F|Θop

i
)̂unv

)
−→ Catj

(
∂ck, (F|Θop

i
)̂unv

)
×

Catj

(
∂ck,(F|Θop

j
)ûnv

) Catj(ck, (F|Θop
j

)̂unv

)
is surjective (on path components).

Recall Definition 2.1 of the functor E : Θn → PShv(Θn). For each ` ≤ n, denote its restriction

E|` : Θ` ↪→ Θn
E−−→ PShv(Θn) .

The canonical morphism ∂ck → ck then determines, for each ` ≤ n, the morphism

F(ck × E|`(•)) −→ F(∂ck × E|`(•))

between `-groupoid objects in Spaces. Taking colimits results in a commutative diagram among
spaces: ∣∣F(ck × E|i(•))

∣∣ //

��

∣∣F(ck × E|j(•))
∣∣

��∣∣F(∂ck × E|i(•))
∣∣ //

∣∣F(∂ck × E|j(•))
∣∣.
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Through Proposition 2.4, which identifies univalent-completion in terms of E, this commutative
diagram among spaces is identified as the commutative diagram (34). So we must show that the
canonical map between spaces

(35)
∣∣F(ck × E|i(•))

∣∣ −→ ∣∣F(∂ck × E|i(•))
∣∣ ×∣∣F(∂ck×E|j(•))

∣∣ ∣∣F(ck × E|j(•))
∣∣

is surjective (on path components). This map (35) factors as the string of maps,∣∣F(ck × E|i(•))
∣∣ '

(a)

∣∣ι∗F(ck × E|j(•))
∣∣

'−−→
(b)

∣∣∣ι∗(F(∂ck × E|j(•)) ×
F(∂ck×E|j(•))

F(ck × E|j(•))
)∣∣∣

'←−−
(c)

∣∣∣ι∗(ι!ι∗F(∂ck × E|j(•)) ×
F(∂ck×E|j(•))

F(ck × E|j(•))
)∣∣∣

surjective−→
(d)

∣∣∣ι!ι∗F(∂ck × E|j(•)) ×
F(∂ck×E|j(•))

F(ck × E|j(•))
∣∣∣

'−−→
(e)

∣∣ι!ι∗F(∂ck × E|j(•))
∣∣ ×∣∣F(∂ck×E|j(•))

∣∣ ∣∣F(ck × E|j(•))
∣∣

'
(f)

∣∣F(∂ck × E|i(•))
∣∣ ×∣∣F(∂ck×E|j(•))

∣∣ ∣∣F(ck × E|j(•))
∣∣ ,

which we now explain. We use the notation ι : Θi ↪→ Θj for the standard fully faithful right
adjoint functor. This functor determines the adjunction ι! : PShv(Θi) � PShv(Θj) : ι∗, whose left
adjoint is given by left Kan extension along ιop, and whose right adjoint is given by restriction
along ιop. With this notation, the equivalence (a) is definitional, from the notation for E|`. The
equivalence (b) is a trivial pullback. Because ι is fully faithful, the unit of this (ι!, ι

∗)-adjunction is
an equivalence. Together with the fact that the right adjoint ι∗ preserves pullbacks, this establishes
the equivalence (c). The map (d) is the canonical one, induced by restriction along the functor
ι. Because this functor ι is a right adjoint, for any presheaf X on Θj , the canonical map between
colimits |ι∗X| → |X| is surjective (on path components). In particular, the map (d) is surjective
(on path components). The equivalence (f) is the fact that left Kan extensions compose, together
with the definitional identification F(∂ck × E|i(•)) = ι∗F(∂ck × E|j(•)) as that supporting the
equivalence (a). The equivalence (e) follows through the same logic, which reduces from presheaves
on Θn to simplicial spaces, as in the final part of Proof of (1), in §2.2. This completes the proof
of Lemma 1.9.

3.2. Proof of Lemma 1.14. Let F ∈ Shv(Θn) be a Segal sheaf. Following §1.3.3, we must show,
for each T ∈ Θn, that the diagram (16) is a limit diagram. Through Proposition 2.4, we can describe
each instance of univalent-completion appearing in (16) by the expression involving E(•):

(36) F(T ) //

��

∣∣F(T × E(•)
)∣∣

��
F(T<n) // fN

(∣∣F(−× E(• < n)
)∣∣)(T<n) //

∣∣F(T<n × E(•)
)∣∣.

is a limit diagram. We do this by induction on n. For n = 0, this assertion is vacuously true. So
assume n > 0. By induction on n, the bottom left horizontal morphism in (36) is an equivalence.
Using that the∞-category Spaces is an∞-topos, Theorem 6.1.0.6 of [Lu1] grants that the square (36)
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is a pullback square provided, for each S ∈ Θn, the square

F(T ) //

��

F
(
T × E(S)

)
��

F(T<n) // F
(
T<n × E(S)

)
is a pullback. To show this square is pullback it is sufficient to show that the square among strict
n-categories

(37) T<n × E(S) //

��

T × E(S)

��
T<n // T

is a pushout in Shv(Θn). Because S → E(S) is an epimorphism in Shv(Θn), it follows through the
Cartesian Bousfield localization of univalent-completion (established in [Re2]) that the top horizontal
morphism in (37) is an epimorphism in Shv(Θn). Thus, the square (37) among strict n-categories
is a pushout in Shv(Θn) provided the square among strict n-categories

T<n × S //

��

T × S

��
T<n // T

is a pushout in Shv(Θn). This latter square is trivially a pushout, after the Cartesian Bousfield
localization of Segal completion (established in [Re2]).

3.3. Proof of Lemma 1.16. From the description of the counit in §1.3.4, we must show, for each
0 ≤ i ≤ n, that the functor between (∞, i)-categories

counit :
(
fN(C)|Θop

i

)
ûnv
−→ Ci

is an equivalence. So fix 0 ≤ i ≤ n. Through the nearly definitional Observation 0.8, it is enough
to show, for each T ∈ Θi, that the map between spaces

(38)
(
fN(C)|Θop

i

)
ûnv

(T ) −→ Ci(T )

is an equivalence. So let T ∈ Θi. Through Proposition 2.4, this map (38) is identified as the map

(39)
∣∣∣fN(C)

(
T × E(•≤i)

)∣∣∣ −→ ∣∣∣Ci(T × E(•≤i)
)∣∣∣ '←−− Ci(T )

in which the leftward arrow is an equivalence because Ci is, by definition, univalent.
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We establish that the map (39) is an equivalence using, for each S ∈ Θi, the following diagram
among spaces

fN(C)
(
T × E(S)

)
�� ++

--fN(C)
(
T<i × E(S)

)
�� **

,,

∣∣∣fN(C)
(
T × E(•≤i)

)∣∣∣
(a)

//

��

Ci(T )

��
fN(C)

(
T<i × E(S<i)

)
**

,,

∣∣∣fN(C)
(
T<i × E(•≤i)

)∣∣∣
(b)

//

��

Ci(T<i)

��∣∣∣fN(C)
(
T<i × E(•≤i)

)∣∣∣S<i
// Ci(T<i)S<i ,

which we now explain. This diagram is a representation of the∞-category [2]×[2] in the∞-category
Spaces, where the second factor selects the vertical sequences.

• For each u ∈ [2], the representation {u}×{0 < 1} → [2]× [2]→ Spaces selects the map that
is induced by the canonical functor T<i → T between i-categories.

• For each u ∈ [2], the representation {u}×{1 < 2} → [2]× [2]→ Spaces selects the map that
is induced by the canonical functor S<i → S between i-categories.

• For each v ∈ [2], the representation {0 < 1} → {v}× [2]× [2]→ Spaces selects the map that
is induced by the canonical map to a colimit.

• For each v ∈ [2], the representation {1 < 2} × {v} → [2] × [2] → Spaces selects the map
that is that determined by (39). In particular, the representation (a) : {1 < 2} × {0} →
[2]× [2]→ Spaces is precisely (39).

• This entire diagram commutes because Ci is univalent.

So we must show that the map (a) is an equivalence.
We isolate some observations concerning surjectivity.

(Surj 1): Observation 1.15 grants that, for v = 0, 1 ∈ [2], the representation {0 < 2} × {v} →
[2]× [2]→ Spaces selects a map between spaces that is surjective (on path components).

(Surj 2): Because this functor ι : Θ0 ↪→ Θi is a right adjoint, for any presheaf F on Θi, the canonical
map between colimits F[0] = |ι∗F| → |F| is surjective (on path components). Applying
this observation to F = fN(C)

(
T × E(•)

)
and to F = fN(C)

(
T<i × E(•)

)
gives that, for

v = 0, 1 ∈ [2], the representation {0 < 1} × {v} → [2]× [2]→ Spaces selects a map between
spaces that is surjective (on path components) in the case that S = [0]. The general case
for S ∈ Θi follows from the 2-out-of-3 property for surjections, again using that [0] ∈ Θi is
a final object.

(Surj 3): After the previous point (Surj 2), commutativity of the square selected by the representa-
tion {0 < 1} × {1 < 2} → [2]× [2]→ Spaces implies the map selected by the representation
{0 < 1} × {2} → [2]× [2]→ Spaces is surjective over the image of the diagonal map, which
is selected by the representation {1} × {1 < 2} → [2]× [2]→ Spaces.

(Surj 4): By the 2-out-of-3 property for surjections, we conclude that, for v = 0, 1 ∈ [2], the rep-
resentation {1 < 2} × {v} → [2] × [2] → Spaces selects a map that is surjective (on path
components).

Now, it follows from Corollary 1.12 that the representation {0 < 2}×{1 < 2} → [2]×[2]→ Spaces
selects a pullback diagram. As established in Proof of (1) of §2.2, the functor

Θop
i

fN(C)
(
T<i×E(•≤i)

)
−−−−−−−−−−−−−−→ Spaces
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is an i-groupoid object. Precisely because i-groupoid objects in Spaces are effective, the represen-
tation {0 < 1} × {1 < 2} → [2] × [2] → Spaces selects a pullback diagram. Taking the case that
S = [1], the two squares {0 < u} × {0 < 1} → [2] × [2] → Spaces, for u = 1, 2, being pullback
implies, for each point x ∈ fN(C)

(
T<i × E([1])

)
, that the induced map between based loop spaces

Ω|x|

∣∣∣fN(C)
(
T<i × E(•≤i)

)∣∣∣ Ω(b)−−−−→ Ω(b)|x|Ci(T<i)

is an equivalence. Using that the∞-topos Spaces is hypercomplete, we conclude from this, together
with the above (Surj) observations concerning the bottom horizontal arrow, that the map (b) is an
equivalence between spaces.

The (Surj) observations give that each of the representations {0 < 1}×{1} → [2]× [2]→ Spaces
and {0 < 2} × {1} → [2] × [2] → Spaces is surjective (on path components). It follows, again,
from Corollary 1.12 that the representation {0 < 2} × {0 < 1} → [2] × [2] → Spaces selects a
pullback diagram. Established above is that the map (b) is an equivalence. Using, again, that the
∞-topos Spaces is hypercomplete, we conclude from (b) being an equivalence, that the map (a) is
an equivalence, as desired, provided the representation {0 < 1} × {0 < 1} → [2] × [2] → Spaces
selects a pullback square. So it remains to show just that.

Let S → S′ be a morphism in Θi. Consider the evident square among strict i-categories:

(40) T<i × E(S′) //

��

T × E(S′)

��
T<i × E(S) // T × E(S).

Applying the left adjoint functor (−|Θop
•

)̂unv : Shv(Θi)→ fCati of (15) to this square (40) results in
square among flagged (∞, i)-categories. Using the fact that the Bousfield localization implementing
Segal completion is Cartesian (as established in [Re2]), this square in flagged (∞, i)-categories is a
pushout. From the definition of fN as a restricted Yoneda functor, it follows that the square among
spaces

(41) fN(C)
(
T × E(S)

)
//

��

fN(C)
(
T × E(S′)

)
��

fN(C)
(
T<i × E(S)

)
// fN(C)

(
T<i × E(S′)

)
is a pullback. Using that the ∞-category Spaces is an ∞-topos, Theorem 6.1.0.6 of [Lu1] gives that
the resulting square involving colimits

fN(C)
(
T × E(S)

)
//

��

∣∣∣fN(C)
(
T × E(•)

)∣∣∣
��

fN(C)
(
T<i × E(S)

)
//
∣∣∣fN(C)

(
T<i × E(•)

)∣∣∣.
is a pullback. As this square is the representation {0 < 1} × {0 < 1} → [2] × [2] → Spaces, this
completes this proof.

3.4. Proof of the main result (Theorem 0.26). To prove Theorem 0.26, it is enough to show
that the unit and the counit of the adjunction (11) are equivalences. Through the discussion in §1.3.3,
that the unit of the adjunction (13) is an equivalence is exactly the statement of Lemma 1.14.
Through the discussion in §1.3.4, that the counit of the adjunction (13) is an equivalence is exactly
the statement of Lemma 1.16.

27



3.5. Proof of Corollary 0.32. We prove Corollary 0.32. Recall Definition 0.28 of n-groupoid
objects, and Definition 0.30 of n-flagged ∞-groupoids.

Let 0 ≤ i ≤ n. Using that the standard fully faithful functor ∗ = Θop
0 ↪→ Θop

i is a fully faithful
left adjoint, restriction and left Kan extension define a localization

Spaces = PShv(Θ0) � PShv(Θi)

in which the left adjoint is fully faithful. Evidently, this left adjoint factors as the commutative
diagram among ∞-categories and fully faithful functors there among:

(42) Spaces //

))��

iGpd[S]

Obs 0.31

��
Shvunv(Θi) // Shv(Θi).

Inspecting the definitions of these full ∞-subcategories of PShv(Θi) (as Bousfield localizations
thereof) reveals that this is a limit diagram. In other words, if a Segal sheaf on Θi is both an
n-groupoid object in Spaces and univalent complete, then it is a constant presheaf.

Lemma 3.1. For each 0 ≤ i ≤ n, the adjunction (11) restricts through Observation 0.31 as an
adjunction:

iGpd[S]

|−|

��

Obs 0.31

��

Spaces
(42)

oo

constant

��
Shv(Θi)

(−)ûnv

��
Shvunv(Θi)

inclusion
oo

Proof. The top horizontal arrow Spaces ↪→ iGpd[S] is a right adjoint; its left adjoint is the functor
| − | : iGpd[S]→ Spaces given by taking the colimit of an i-groupoid object Θop

i → Spaces. Because
the straight diagram in the statement of the lemma commutes, there is a canonical lax-commutative
diagram:

iGpd[S]

|−|

��

Obs 0.31

��

⇑ Spaces

constant

��
Shv(Θi)

(−)ûnv // Shvunv(Θi).

It remains, then, to show that this lax-commutative diagram is, in fact, a commutative diagram.
So let G ∈ iGpd[S] be an i-groupoid object. We must show that the canonical morphism between
univalent Segal sheaves on Θi under G,

Gûnv −→ |G| ,

is an equivalence. Through the universal property of the univalent-completion of G, this is to show
that, for each univalent Segal sheaf C on Θi, each horizontal morphism in Shv(Θi),

G //

�� &&

C

|G|

88

// C∼,

OO

admits a unique factorization as in the upward diagonal arrow. The fully faithful functor iGpd[S] ↪→
Shv(Θi) is a left adjoint; we will denote its right adjoint as (−)∼ : Shv(Θi)→ iGpd[S]. The definition
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of univalent Segal sheaves on Θi is just so that this adjunction restricts as an adjunction

Spaces � Shvunv(Θi) : (−)∼.

This adjunction determines a unique downward diagonal factorization, and also ensures that the
bottom right presheaf C∼ on Θi is, in fact, constant. Because C∼ is constant, there is a unique
factorization as in the bottom horizontal arrow. This establishes a unique factorization as in the
upward diagonal arrow, as desired. �

Remark 3.2. Lemma 3.1 articulates that the univalent-completion of an i-groupoid object Θop
i

G−→
Spaces is nothing other than its colimit |G|, regarded as a constant presheaf on Θi which is thusly
univalent and Segal.

Lemma 3.3. The adjunction (15) restricts through Observation 0.31 as an adjunction:∣∣(−)|Θop
•

∣∣ : nGpd[S] � fGpdn : fN .

Proof. Lemma 3.1 implies, and identifies how, the restriction of (−|Θop
•

)̂unv to nGpd[S] factors
through fGpdn. It remains to show that the restriction of fN to fGpdn factors through nGpd[S].

By direct inspection, there is a canonical lax-commutative diagram among ∞-categories,

Θn
//

E

��

Catn // fCatn // Γ
(
Shvunv(Θ•)→ [n]

)

nGpd[S]
BB

⇑ fGpdn

OO

// Fun([n], Spaces),

OO

where the bottom curved arrow has been established in the first line of this proof, and the right
horizontal arrows are the evident fully faithful functors. For each 0 ≤ i ≤ n, the standard fully
faithful functor Spaces ↪→ Cati is a right adjoint. Their left adjoints assemble as a left adjoint to
the standard fully faithful functor Fun([n], Spaces) ↪→ Γ

(
Shvunv(Θ•) → [n]

)
whose image consists

of those sections that take values in ∞-groupoids. Replacing the right upward arrow in the above
diagram by this left adjoint determines another lax-commutative diagram among ∞-categories:

Θn
//

E

��

Catn // fCatn // Γ
(
Shvunv(Θ•)→ [n]

)
��

nGpd[S]
BB

⇑ fGpdn // Fun([n], Spaces).

Observation 2.3 implies that this lax-commutative diagram is, in fact, a commutative diagram. Now,
the functor fN is defined as the restricted Yoneda functor along the composite functor Θn → fCatn
appearing in the above diagram. Commutativity of the above diagram thusly gives that, for each
n-flagged∞-groupoid X = (X0 → · · · → Xn), and each T ∈ Θn, that the canonical monomorphism
between spaces

fN(X)(E(T )) −→ fN(X)(T )

is an equivalence. We conclude that flagged (∞, n)-category fN(X) is, in fact, an n-flagged ∞-
groupoid, as desired. �

Remark 3.4. In Lemma 3.3, the left adjoint carries an n-groupoid object Θop
n

G−→ Spaces to the
sequence of spaces |G|Θop

0
| → |G|Θop

1
| → · · · → |G|Θop

n
|. Lemma 1.9 ensures that this sequence of

spaces indeed satisfies the requisite connectivity conditions to be an n-flagged ∞-groupoid. The
right adjoint in Lemma 3.3 carries an n-flagged ∞-groupoid X0 → · · · → Xn to its n-Cech nerve,
elaborated in Remark 0.33.
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Remark 3.5. Note that the right adjoint in Lemma 3.3 is defined on the full ∞-subcategory
Fun([n], Spaces) ⊂ Γ

(
Shvunv(Θ•) → [n]

)
. As so, for X• ∈ Fun([n], Spaces) a sequence of spaces, the

counit ∣∣fN(X•)|Θop
•

∣∣ −→ X•

is the terminal n-flagged ∞-groupoid over X•. In this way, this is counit is a relative connective
cover of X•. Indeed, for n = 1, and should X0 ' ∗, then this morphism is (∗ → X ′1) → (∗ → X1)
where X ′1 → X1 is the canonical map from the connected component of X1 through which ∗ → X1

factors. And for general n, yet X0
'−→ . . .

'−→ Xn−1 ' ∗, this morphism is (∗ → · · · → ∗ → X ′n) →
(∗ → · · · → ∗ → Xn) where X ′n → Xn is the n-connective cover of the based space ∗ → Xn.

Proof of Corollary 0.32. It remains to show that the unit and the counit of the adjunction of
Lemma 3.3 are equivalences. Through Lemma 3.3, it is enough to observe that the unit and the
counit of the extended adjunction (15) are equivalences. That this is so is precisely Lemma 1.14
and Lemma 1.16, respectively. �
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