N = natural numbers Z = integers Q = rationals R = reals

1. A subgroup \(H \) of a group \(G \) is said to be characteristic in \(G \) if \(\varphi(H) \subseteq H \) for every (surjective) isomorphism \(\varphi : G \to G \)

 (a) Prove that if \(H \) is characteristic in \(G \) then \(H \) is a normal subgroup of \(G \).

 (b) Prove that the center \(Z(G) := \{ a \in G : ab = ba \text{ for all } b \in G \} \) is characteristic in \(G \).

2. Suppose \(G \) is a finite abelian group and that \(n \in \mathbb{N} \) is relatively prime to the order of \(G \). Prove that for each \(y \in G \) there is an \(x \in G \) so that \(nx = y \).

3. Prove that:

 (a) \(\mathbb{Q}[x] \) is a principal ideal domain.

 (b) \(\mathbb{Z}[x] \) is not a principal ideal domain.

 (c) The kernel of the ring homomorphism \(\varphi : \mathbb{Z}[x] \to \mathbb{R} \) that takes \(x \) to \(1 + \sqrt{2} \) is a principal ideal.

4. Let \(f(x) = x^5 - 4x + 2 \in \mathbb{Q}[x] \) and let \(G \) be the Galois group of \(f(x) \). Prove that:

 (a) \(5 \mid |G| \).

 (b) \(2 \mid |G| \).