(1) Recall the definition of the automorphism group $\text{AUT}(G) = \{ \varphi : G \to G \mid \varphi \text{ is an isomorphism} \}$. Describe $\text{AUT}(\mathbb{Z}_4)$ and $\text{AUT}(\mathbb{Z}_2 \times \mathbb{Z}_2)$.

(2) Which of the symmetric (permutation) groups S_n, for $n \geq 1$, have a subgroup isomorphic to the dihedral group with 12 elements?

(3) Suppose that $\mathcal{R} = \mathbb{Q}[x]/(x^2 - 3x + 2)$. Prove any of the following statements that happen to be true, and disprove those which are false.
 (a) \mathcal{R} is a field.
 (b) \mathcal{R} is an integral domain.
 (c) \mathcal{R} is a ring isomorphic to a product of two fields.

(4) The roots of an irreducible polynomial $f(x)$ are $\{\alpha, -1/\alpha, \beta, -1/\beta\}$.
 (a) If $\gamma = \alpha - 1/\alpha$, show that $[\mathbb{Q}[\alpha] : \mathbb{Q}[\gamma]] = 2$.
 (b) Show that the Galois group of $f(x)$ has fewer than 24 elements.