ANALYSIS: Master’s Comprehensive Exam

Instructions: Attempt all of the problems, showing work. Place at most one problem solution on a side for each sheet of paper turned in. Do not submit your scratch work.

1. Define the function \(f(x) = \sum_{n=0}^{\infty} \left(\frac{\sin x}{n+1} \right)^2 \). For what values of \(x \in \mathbb{R} \) is \(f \) continuous? Justify your answer.

2. Suppose that \(f : K \rightarrow \mathbb{R}^m \) is continuous on the compact set \(K \subset \mathbb{R}^n \). Define uniform continuity. Prove that \(f \) is uniformly continuous.

3. Suppose that \(f : [0,1] \rightarrow \mathbb{R} \) is a continuous function.

 (a) Evaluate \(\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx \). Be sure to prove your answer is correct.

 (b) Evaluate \(\lim_{n \to \infty} n \int_0^1 x^n f(x) \, dx \). Be sure to prove your answer is correct.