(1) In each case below, give examples of pairs of sequences \(\{x_n, y_n\} \) such that \(x_n \to 0 \) and \(y_n \to \infty \) and which satisfy the specified limits as \(n \to \infty \). Prove that your examples are really correct.
 (a) \(x_n y_n \to 0 \)
 (b) \(x_n y_n \to 6 \)
 (c) \(x_n y_n \) is bounded but has no limit.

(2) Suppose that second derivative \(f''(x) < 0 \) on \((a, b), a < b\), and the derivative \(f' \) is continuous on \([a, b]\). Prove that \((b, f(b)) \) must lie under the tangent line to the graph at the point \((a, f(a))\).

(3) Given the sequence of functions
 \[f_{nk}(x) = \frac{2n^k x}{(1 + n^2 x^2)^2} \quad n = 1, 2, \ldots, \]
 defined for \(0 \leq x \leq 1 \) and \(k \in \mathbb{R} \),
 (a) for what \(k \) does \(f_{nk} \) converge uniformly on \([0, 1]\) and what is the uniform limit \(f = \lim_{n \to \infty} f_{nk} \)?
 (b) Find an antiderivative \(I_{nk}(x) = \int f_{nk}(x) \, dx \), for all \(k, n \),
 (c) For what \(k \) values does \(\lim_{n \to \infty} \int_0^1 f_{nk}(x) \, dx \) exist? Compare with the answer to Problem (3a).