1. A small pond is stocked with game fish, both trout and bass. Let \(x(t) \) denote the population of the trout in the pond at any time \(t \) and let \(y(t) \) denote the population of the bass in the pond at any time \(t \). Denote the fundamental dimensions as \([x] = [y] = P\), and \([t] = T\). Assume that without the bass, the trout population could grow indefinitely (growth rate proportional to the population \(x \) with proportionality constant \(k_1 \)). However, the bass population decreases the growth rate of the trout population in a manner proportional to the number of possible interactions between the two species, say proportional to the product of \(x \) and \(y \) with proportionality constant \(k_2 \). A similar situation is assumed for the growth of the bass population, where the proportionality constant for the interaction term is \(k_2 \) again. If the trout population is initially \(x_0 \) and the bass population is initially \(y_0 \), a mathematical model that describes \(x(t) \), the trout population, and \(y(t) \), the bass population, at time \(t \geq 0 \) is given by

\[
\frac{dx}{dt} = k_1 x - k_2 xy, \quad x(0) = x_0 \\
\frac{dy}{dt} = k_3 y - k_2 xy, \quad y(0) = y_0
\]

(a) Use dimensional analysis to determine the fundamental dimensions of all the variables and parameters. Identify the fundamental dimensions of \(x, y, t, k_1, k_2, k_3, x_0, \) and \(y_0 \).

(b) Determine how many independent dimensionless variables and parameters are necessary to describe this physical process.

(c) Scale the problem to arrive at a dimensionless model involving dimensionless populations \(X \) and \(Y \) and dimensionless time \(s \). Carefully identify the dimensionless parameters.

2. Consider the nonlinear initial-value problem

\[
y''(x) + y'(x) + \varepsilon y^2 = 0 \\
y(0) = 1 \\
y'(0) = 0
\]

where \(\varepsilon \) is a small positive parameter.

(a) Carefully identify the leading order and first-order initial-value problems to be solved for a perturbation solution.

(b) Solve the two initial-value problems above.

(c) Give the two-term perturbation solution which involves the leading order approximation and the first-order correction.
3. Consider the isoperimetric problem

\[J(y) = \int_0^1 xy(x)dx \]

subject to the constraint

\[W(y) = \int_0^1 (y(x))^2 dx = \frac{1}{12} . \]

Define the functional \(J^*(y) = J(y) + \lambda W(y) \) and the class of admissible functions \(A = \{ y \in C[1, 2] : W(y) = \frac{1}{12} \} \).

(a) Write down the Euler equation for this problem and show that the extremals in \(A \) are \(y_0(x) = \pm x/2 \).

(b) Show that \(J(y_0 + y) = J(y_0) + J(y) \).

(c) Show that if \(y_0 + y \) is in the admissible class \(A \) then \(W(y_0 + y) = W(y_0) + W(y) \pm J(y) \) for either extremal \(y_0 \).

(d) Beginning with \(y_0 = \pm x/2 \in A \), assume that \(y \) is such that \(y_0 + y \) is in \(A \). Then \(W(y_0) = W(y_0 + y) = \frac{1}{12} \). Use this and part (c) to show that \(W(y) = \mp J(y) \).