Instructions: Attempt all questions. Show all work.

1. Consider the map $f : \mathbb{R} \to \mathbb{R}$ defined by

 $$x \to f(x) = \frac{x}{\mu + x}$$

 where μ is a real parameter.

 a) Find all the fixed points of this map and determine the μ for which they are stable.

 b) Does this map have a minimal period 2 orbit for any μ? If so, what μ?

2. In polar coordinates (r, θ) planar flow is described by:

 $$\frac{dr}{dt} = r(\mu + r^2 - r^4)$$ \hspace{1cm} (1)

 $$\frac{d\theta}{dt} = 1 + r^2 \sin^2 \theta$$ \hspace{1cm} (2)

 where μ is a real parameter.

 a) Draw a bifurcation diagram for the system (1)-(2) in the (μ, r)-plane labelling the stability of all periodic orbits and fixed points (Use a solid line for stable and a dashed line for unstable).

 b) Does the system have a Hopf bifurcation? Explain.

 c) Draw a qualitatively accurate phase portrait in the (x, y)-plane for $\mu = -\frac{1}{8}$.

3. The following questions apply to the planar system:

 $$\frac{dx}{dt} = x(4 - y - x^2)$$ \hspace{1cm} (3)

 $$\frac{dy}{dt} = y(1 - x)$$ \hspace{1cm} (4)

 a) Determine the coordinates and stability of all fixed points. Label the location of these fixed points in the xy-plane along with the x and y nullclines.

 b) Does this system have any periodic orbits? Explain.