Linear Algebra Masters Comprehensive Exam August 2015
Assume that all Vector Spaces are Finite Dimensional
Do Four of the following Six Problems and show all work.

1. Define \(T \in \mathcal{L}(P_2(\mathbb{R})) \) by \(T(f) = x \frac{df}{dx} \), so for example \(T(x^2) = x(2x) = 2x^2 \).

 (a) Find the matrix of \(T \) with respect to the basis \((1, x, x^2)\).

 (b) Find \(T^* \).

 (c) Find \(N_{T^*} \).

 (d) Now make \(P_2(\mathbb{R}) \) into an inner-product space by defining

 \[
 \langle p, q \rangle = \int_0^1 p(x)q(x) \, dx.
 \]

 Is \(T \) self-adjoint?

2. Let

 \[
 A = \begin{bmatrix} 1 & 2 \\ 1 & 4 \\ 2 & 6 \end{bmatrix}.
 \]

 (a) Find \(N_{AT} \).

 (b) Find conditions on \(b \) the guarantee that \(Ax = b \) has a solution.

3. Prove that if \(T \in \mathcal{L}(V) \) is normal, then

 \[\text{range } T = \text{range } T^* \]

4. Prove that any linear map on a subspace of \(V \) can be extended to a linear map on \(V \). In other words, show that if \(U \) is a subspace of \(V \) and \(S \in \mathcal{L}(U, W) \), then there exists \(T \in \mathcal{L}(V, W) \) such that \(Tu = Su \) for all \(u \in U \).

5. Suppose that \(T \in \mathcal{L}(V, W) \) is injective (1-to-1) and \((v_1, \ldots, v_n)\) is linearly independent in \(V \). Prove that \((Tv_1, \ldots, Tv_n)\) is linearly independent in \(W \).

6. Prove that if \(T \in \mathcal{L}(V) \) is self-adjoint, then the singular values of \(T \) equal the absolute values of the eigenvalues of \(T \) (repeated appropriately).