M.S. Numerical Exam 2002
(DEPARTMENT OF MATHEMATICAL SCIENCES, M.S.U.)

Instructions: Attempt all questions. Show all work.

1. Consider the system

\[
\begin{align*}
 x^2 + \frac{1}{3}y^3 &= 9, \\
 y^2 - x &= 9.
\end{align*}
\]

Let \(x^{(n)} = (x_n, y_n)^T, n \geq 0 \), be the \(n \)-th iterate of a Newton’s Method approximation of a root of (1)-(2). Compute \(x^{(1)} \) for the initial guess \(x^{(0)} = (0, 1)^T \).

2. Let \(U \in \mathbb{R}^{n \times n} \) be a nonsingular upper triangular matrix and \(e_j \) be the \(j \)-th column of the \(n \times n \) identity matrix. Solutions \(x \) of \(Ux = e_j \) have the form \(x = (x_1, x_2, \ldots, x_j, 0, \ldots, 0)^T, 1 \leq j \leq n \). Given this special solution structure, how many flops are required to solve

\[Ux = e_j + e_{j-1} \]

using backward substitution? Assume that all upper off diagonal elements of the matrix \(U \) are nonzero.

3. Let \(Q(f) \) be the 2-point quadrature approximation

\[Q(f) = f \left(-\sqrt{3} \right) + f \left(\sqrt{3} \right) \]

of the integral \(I(f) \equiv \int_{-1}^{1} f(x)dx \).

 a. Define the term **degree of accuracy** for the quadrature rule \(Q \).

 b. Through explicit calculation, compute the degree of accuracy for the quadrature rule \(Q \).

4. Consider the scalar initial value problem

\[
\begin{align*}
 \frac{dy}{dt} &= f(y, t) \\
 y(0) &= 0
\end{align*}
\]

The Runge-Kutta method of order 2 known as Heun’s Method is defined by the following

\[w_{i+1} = w_i + \frac{h}{2} \left[f(w_i, t_i) + f(w_i + hf(w_i, t_i), t_{i+1}) \right], \quad (3) \]

for \(i = 0, 1, 2, \ldots \) where \(t_i = ih, h > 0 \) is the step size for the method and \(w_i \) is the approximation for \(y(t_i) \). Show that if \(f(0, t) = 0 \) the global error at \(t_i \) for the method is \(|y(t_i)| \).