1. Given a positive definite matrix \(A \in \mathbb{R}^{n \times n} \), define the \(A \)-norm on \(\mathbb{R}^n \) by

\[
\| x \|_A = \sqrt{x^T A x}
\]

Show that this is indeed a norm on \(\mathbb{R}^n \).

2. Using the matrix \(A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix} \)

(a) Compute a reduced SVD factorization.
(b) Compute a full SVD factorization.

3. Consider the matrix \(A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \)

(a) Compute a reduced QR factorization \(A = \hat{Q} \hat{R} \).
(b) Compute a full QR factorization \(A = QR \).
(c) Let \(B \in \mathbb{R}^{n \times n} \) be a matrix with the property that columns 1, 3, 5, 7, \ldots are orthogonal to columns 2, 4, 6, 8, \ldots. You also may assume that \(B \) has full rank. In the QR factorization of \(B = QR \), describe the special structure that \(R \) possesses.

4. For the following IVP

\[
y' = f(t, y) \\
y(t_0) = y_0,
\]

(a) Compute the Local Truncation Error of the implicit multistep method given by

\[
y_{n+2} = \frac{4}{3}y_{n+1} - \frac{1}{3}y_n + \frac{2}{3}k f(t_{n+2}; y_{n+2})
\]

(b) Is the method Consistent?
(c) Give the characteristic polynomial \(\rho(\zeta) \), and assess the Zero-Stability property of this method.
(d) Comment on the convergence properties of this method.
5. (a) Determine the general solution to the linear difference equation

\[2U^{n+3} - 5U^{n+2} + 4U^{n+1} - U^n = 0 \]

Hint: One root of the characteristic polynomial is at \(\zeta = 1 \).

(b) Determine the solution to this difference equation with the starting values \(U^0 = 11, U^1 = 5, \) and \(U^2 = 1 \). What is \(U^{10} \)?

(c) For the following IVP

\[y' = f(t, y) \]
\[y(t_0) = y_0, \]

approximate \(y(t) \) by applying the LMM described by

\[2U^{n+3} - 5U^{n+2} + 4U^{n+1} - U^n = k(\beta_0 f(U^n) + \beta_1 f(U^{n+1})). \]

For what values of \(\beta_0 \) and \(\beta_1 \) is local truncation error \(O(k^2) \)?

(d) Suppose you use the values of \(\beta_0 \) and \(\beta_1 \) just determined in this LMM. Is this a convergent method?

6. For the two-point BVP described by

\[u'' - u = f(x), \quad x \in (0, 1) \]
\[u(0) = 0, \quad u(1) = 0, \]

give the general form of the linear system of equations that you would solve in order to approximate \(u(x) \) using the finite difference technique of a 2nd order centered difference for the derivative approximation with a step size of \(h \). Show that the system is guaranteed to be uniquely solvable.