Problem 1. Show that if \(f, g : X \to Y \) are continuous, where \(Y \) is a Hausdorff space, then the set

\[
F = \{ x \in X \mid f(x) = g(x) \}
\]

is a closed subset of \(X \).

Problem 2. Let \(X \) and \(Y \) be the two subspaces of the plane \(\mathbb{R}^2 \) defined as follows: \((a, b) \in X\) if and only if \(a \) and \(b \) are both irrational; \((a, b) \in Y\) if and only if \(a \) is irrational or \(b \) is irrational, or both. Prove that one of the spaces \(X \) or \(Y \) is connected and the other is not.

Problem 3. Suppose that \((X, d)\) is a compact metric space which has the following property: for any points \(x \) and \(y \) of \(X \), and for any \(\epsilon > 0 \), there exists a finite sequence \(\{x = x_0, x_1, x_2, \ldots, x_n = y\} \) of points of \(X \) such that \(d(x_{i-1}, x_i) < \epsilon \) for \(i \in \{1, 2, \ldots, n\} \). Prove that \(X \) is connected.