Masters Comprehensive Exam - Topology
January 5, 2008

CHOOSE THREE

(1) Suppose that \(f : X \to Y \) is continuous and \(Y \) is Hausdorff. Prove that \(\{ (x_1, x_2) : f(x_1) = f(x_2) \} \) is a closed subset of \(X \times X \) (with the product topology).

(2) Suppose that \(f : X \to Y \) is a continuous surjection. Prove:
 a: If \(X \) is compact then \(Y \) is compact.
 b: If \(X \) is connected then \(Y \) is connected.

(3) Let \(X \) be the subspace of \(\mathbb{R}^3 \), \(X = \{ (x, y, z) : x^2 + y^2 \leq 1, z = -1 \} \cup \{ (x, y, z) : x^2 + y^2 \leq 1, z = 1 \} \), and let \(\sim \) be the equivalence relation defined on \(X \) by \((x_1, y_1, z_1) \sim (x_2, y_2, z_2) \) if and only if \((x_1, y_1, z_1) = (x_2, y_2, z_2) \) or \(x_1 = x_2, y_1 = y_2 \), and \(x_1^2 + y_1^2 = 1 \). Prove that the quotient space \(X/\sim \) is homeomorphic with the sphere \(S^2 = \{ (x, y, z) : x^2 + y^2 + z^2 = 1 \} \).

(4) Suppose that \(\gamma : [0, 1] \to X \) is a path from \(x_0 \) to \(x_1 \). Define \(\Gamma : \Omega(X, x_0) \to \Omega(X, x_1) \) (\(\Omega(X, x_i) \) is the set of loops in \(X \) based at \(x_i \)) by

\[
\Gamma(\alpha)(t) = \begin{cases}
\gamma(1 - 3t), & 0 \leq t \leq 1/3, \\
\alpha(3t - 1), & 1/3 \leq t \leq 2/3, \\
\gamma(3t - 2), & 2/3 \leq t \leq 1.
\end{cases}
\]

Prove that:

a: If \(\alpha \) is path homotopic to \(\beta \) then \(\Gamma(\alpha) \) is path homotopic to \(\Gamma(\beta) \).

b: \(\Gamma(\alpha \star \beta) \) is path homotopic to \(\Gamma(\alpha) \star \Gamma(\beta) \).