PhD Dynamics Exam (Aug 2016)

NAME:

Pick, Circle, and Solve 5 problems. Good luck!

1. Consider a continuous map \(f : X \to X \) of a compact metric space. Show that
 a) for any \(x_0 \in X \), the omega limit set \(\omega(x_0) \) (which consist of all limits \(\lim_{k \to \infty} f^{n_k}(x_0) \)
 where \(n_k \to \infty \) is contained in \(Y := \bigcap_{n \geq 0} f^n(X) \);
 b) there exists \(x_0 \in X \) such that \(x_0 \in \omega(x_0) \).

2. Prove that, for any triple \(d_0, d_1, d_2 \) of decimal digits, there is \(n \in \mathbb{N} \) such that \(3^n \)
 has decimal expansion that starts with the sequence, that is \(3^n = d_0d_1d_2 \ldots \). (You can use without proof that \(\log_{10} 3 \) is irrational.)

3. For a continuous map \(f : X \to X \) of a compact metric space, show that \(f \) is
topologically transitive (i.e., has a point with dense orbit) if \(\bigcup_{n \in \mathbb{N}} f^n(U) \) is dense
in \(X \) for any non-empty open \(U \subset X \).

4. Let \(f : \mathbb{T}^2 \to \mathbb{T}^2 \) be induced by some integer matrix \(A \), i.e., \(f(x) = Ax \), with
 the arithmetic modulo one. (\(\mathbb{T}^2 \) is the usual flat torus \(\mathbb{R}^2/\mathbb{Z}^2 \).) Prove that every
 point \(x \in \mathbb{T}^2 \) with rational coordinates is pre-periodic (i.e., \(f^n(x) \) is periodic for
 some \(n \geq 0 \)). Additionally, argue that if all such points are actually periodic then
 \(A \) is invertible over the integers (i.e., \(\det(A) = \pm 1 \)).

5. Consider continuous maps of compact metric spaces \(f : X \to X \) and \(g : Y \to Y \)
 where \(g \) is a factor of \(f \) (i.e., \(\phi \circ f = g \circ \phi \) for some continuous surjective \(\phi : X \to Y \)).
 Prove that \(h_{\text{top}}(g) \leq h_{\text{top}}(f) \). Give an example of \(f, g \), and the factor map \(\phi \)
 where \(h_{\text{top}}(f) = h_{\text{top}}(g) \) even though \(f \) and \(g \) are not topologically conjugate.

6. Give an example of a subshift \(X \) that is not a subshift of finite type (SFT). (This
 includes showing that your \(X \) is not an SFT, i.e., there is not a finite forbidden set
 defining \(X \).)

7. Let \(\phi \) be the substitution \(1 \mapsto 121, \ 2 \mapsto 1 \) and \(w = w_1w_2w_3 \ldots \) be an infinite
 fixed word, i.e., \(\phi(w) = w \). Compute the frequency of the symbol 1 in \(w \), as given
 by
 \[\nu(1) := \lim_{n \to \infty} \frac{1}{n} \# \{ k \in \{ 1, \ldots, n \} : w_k = 1 \} \].
 You can take for granted that the limit exists.