Real Analysis Comprehensive Exam

9:00 am - 1:00 pm, Monday, August 17th, 2015

Solve 4 of the following 5 problems. Clearly mark the solutions to be graded.

1. Let \(m \) denote the Lebesgue measure on \(\mathbb{R} \), and let \(0 < \epsilon < 1 \). Show that there is a subset \(U \) of \([0,1]\) with the following properties:

 - \(U \) is open,
 - \(U \) is dense in \([0,1]\), and
 - \(m(U) < \epsilon \).

2. Let \((X, \mathcal{S}, \mu)\) be a measure space, and let \(0 < p < r < q < \infty \). Show that

 \[L^p(\mu) \cap L^q(\mu) \subseteq L^r(\mu). \]

3. Let \(m \) denote the Lebesgue measure on \(\mathbb{R} \). Let \(A \) and \(B \) be measurable subsets of \([0,1]\) with

 \[m(A) = 1 = m(B). \]

 Show that for every \(0 < \lambda < 1 \), there are points \(a \in A \) and \(b \in B \) with \(a - b = \lambda \).

4. Let \((X, \mathcal{S}, \mu)\) be a measure space, and let \(f \) be a non-negative measurable function in \(L^1(\mu) \).

 Show that for every \(\epsilon > 0 \), there is a number \(\delta > 0 \) such that if \(E \in \mathcal{S} \) is a measurable set satisfying \(\mu(E) < \delta \), then

 \[\int_E f \ d\mu < \epsilon. \]

5. Let \((X, \mathcal{S}, \mu)\) be a measure space with \(\mu(X) < \infty \), and let \(\{f_n\}_{n\in\mathbb{N}} \) be a sequence of measurable functions on \(X \). Show that \(\{f_n\}_{n\in\mathbb{N}} \) converges to 0 in measure if and only if

 \[\lim_{n \to \infty} \int_X \frac{|f_n|}{1 + |f_n|} \ d\mu = 0. \]