Real Analysis Comprehensive PhD Exam
(*Aug 2017*)

NAME:

Pick, Circle, and Solve 4 problems. Good luck!

1. Suppose that \(\mu \) and \(\nu \) are finite measures (on the same \(\sigma \)-algebra \(\mathcal{X} \)) and that \(\nu \ll \mu \) (i.e. \(\mu(E) = 0 \implies \nu(E) = 0 \) for all \(E \in \mathcal{X} \)). Show that, for any \(\varepsilon > 0 \), there is \(\delta > 0 \) such that \(\mu(E) < \delta \implies \nu(E) < \varepsilon \) for all \(E \in \mathcal{X} \).

2. Suppose that \(\mathcal{A} \) is a collection of subsets of a set \(X \) that is closed under countable unions and finite intersections (i.e. \(A_n \in \mathcal{A} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A} \) and \(A_1, A_2 \in \mathcal{A} \implies A_1 \cap A_2 \in \mathcal{A} \)). A function \(f : X \to \mathbb{R} \) is \(\mathcal{A} \)-**measurable** iff the sets \(\{ x \in X : f(x) > \alpha \} \) belong to \(\mathcal{A} \) for all \(\alpha \in \mathbb{R} \). Prove that, if \(f \) and \(g \) are \(\mathcal{A} \)-measurable, then \(f + g \) is \(\mathcal{A} \)-measurable. (Please, make sure to carefully justify all steps.)

3. Show that any bounded linear functional \(\xi : L^1(\mathbb{R}) \to \mathbb{R} \) can be decomposed, \(\xi = \xi_1 + \xi_2 \), into two bounded linear functionals \(\xi_1, \xi_2 : L^1(\mathbb{R}) \to \mathbb{R} \) where \(\xi_1 \) is supported on \([0, \infty) \) and \(\xi_2 \) is supported on \((-\infty, 0] \). (A functional \(\xi : L^1(\mathbb{R}) \to \mathbb{R} \) is supported on a segment \(J \) iff \(\xi(f) = 0 \) for any \(f \in L^1(\mathbb{R}) \) that a.e. vanishes on \(J \).)

4. Without leaning on Lebesgue Density Theorem, prove that if the Lebesgue measure \(\lambda(A) \) of a subset \(A \subset [0, 1] \) is positive then there is a segment \(J \subset \mathbb{R} \) such that \(\lambda(A \cap J) > \frac{1}{2} \lambda(J) \).

5. Let \(f : \mathbb{R} \to \mathbb{R} \) be integrable and essentially bounded. Define

\[
F(x) := \int_{-\infty}^{\infty} f(x - t)f(x + t) \, dt.
\]

(i) Show that \(F \) is a well defined element of \(L^1(\mathbb{R}) \) and that \(\| F \|_1 \leq \frac{1}{2} \| f \|_1^2 \).

(ii) Show that \(F \) is continuous.