1. Using the principal branch definition for z^i determine the set of all $z \in \mathbb{C}$ for which $(z^i)^2 = (z^2)^i$.

2. Suppose $f(z)$ is analytic on $|z| < 127$, has zero as a root and $\text{Im}(f(z)) = y(4x - 1)$, $z = x + iy$.
Determine a formula for $f(z)$.

3. The function

 $$f(z) = \frac{1}{z^2 \log(1 + 4z)}$$

 has a pole of order 3 at $z = 0$ (here $\log(z)$ is principal branch).

 a) Determine the first three terms a Laurent expansion for $f(z)$ convergent on an annular region centered at $z = 0$.

 b) Compute the integral

 $$I = \int_{|z|=0.00001} f(z) \, dz$$

 where the orientation of the circle is counterclockwise.

4. Using an appropriate branch for $z \mapsto \sqrt{z}$, evaluate the following indefinite integral:

 $$I = \int_{1}^{\infty} \frac{\sqrt{x-1}}{x^2} \, dx$$

5. Let

 $$f(z) = \frac{i - z}{i + z}$$

 and define

 $$S(z) = \sum_{n=0}^{\infty} f(z)^n$$

 a) By using the binomial theorem and summing the series $S(z)$, find a meromorphic function $g(z)$ defined for all $z \neq 0$ that is equal to $S(z)$ wherever it converges.

 b) Using the fact that $f(z)$ is a linear fractional transformation, determine the set of z for which $S(z)$ converges.