1. Consider the ODE boundary value problem
\[-\frac{d^2 u}{dx^2} = f(x), \quad 0 < x < 1,\]
\[u(0) + \frac{du}{dx}(0) = 0, \quad u(1) = 0.\]

Recall that the variational, or weak, formulation for this problem is to find \(u \in V \) for which
\[a(u, v) = L(v), \quad \text{for all } v \in V.\]

a. Specify the appropriate vector space \(V \) and derive the functionals \(a(u, v) \) and \(L(v) \) in the variational form.

b. Verify that if \(u \) is a weak solution, and \(u \in C^2[0,1] \), then \(u \) solves the boundary value problem.

c. Explain how to implement the Ritz-Galerkin method for this problem.

2. Consider the parameterized family of time-marching methods
\[u_{j}^{n+1} - u_{j}^{n} = \Delta t \left[\alpha (u_{j-1}^{n} - 2u_{j}^{n} + u_{j+1}^{n}) + (1 - \alpha) (u_{j-1}^{n+1} - 2u_{j}^{n+1} + u_{j+1}^{n+1}) \right] \]
for the PDE \(u_t = u_{xx} \), \(0 < x < 1, \ t > 0 \), with homogeneous Dirichlet boundary conditions, where \(u_{j}^{n} \approx u(jh, n\Delta t) \), and \(\alpha \) is real-valued. Determine the ranges of parameters \(\alpha \) for which the time-marching method is unconditionally stable and for which it is always unstable.

For remaining values of \(\alpha \) (where the method is conditionally stable) find conditions on \(h, \Delta t \), and \(\alpha \) which guarantee stability.

3. Consider the difference method
\[\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \frac{u_{i-1,j}^{n} + u_{i+1,j}^{n} + u_{i,j-1}^{n} + u_{i,j+1}^{n} - 4u_{i,j}^{n}}{h^2}\]
for the 2-d heat equation,
\[u_t = u_{xx} + u_{yy}.\]

a. Perform a Von Neumann stability analysis to determine the range of values of \(\Delta t \) and \(h \) for which this method is stable.

b. Provide a general definition of local truncation error for evolution equations, and then compute the local truncation error for this method.
4. Derive the Gauss-Legendre quadrature formula,
\[\int_{-1}^{1} f(x) \, dx \approx \sum_{k=1}^{n} f(x_k) \, w_k, \]
which is exact for all polynomials of degree \(\leq 2n - 1 \), i.e., explain how to obtain the \(x_k \)'s and \(w_k \)'s, and prove that your formula does indeed have the desired exactness. You may use the Hermite polynomial interpolation formula: If \(f \in C^{2n}[a, b] \) and \(\{x_k\}_{k=1}^{n} \) are distinct points in \([a, b]\), then
\[
f(x) = \sum_{k=1}^{n} f(x_k) h_k(x) + \sum_{k=1}^{n} f'(x_k) \tilde{h}_k(x) + \frac{f^{(2n)}(\xi)}{(2n)!} \left(\prod_{k=1}^{n} (x - x_k)^2 \right),
\]
where for \(k = 1, \ldots, n \),
\[
h_k(x) = [1 - 2(x - x_k)\ell'_k(x_k)][\ell_k(x)]^2, \\
\tilde{h}_k(x) = (x - x_k)[\ell_k(x)]^2, \\
\ell_k(x) = \prod_{i=1,i\neq k}^{n} \frac{(x - x_i)}{(x_k - x_i)}.
\]

5. The leapfrog method for the 1-d linear advection equation
\[u_t + au_x = 0 \]
is
\[
\frac{u_i^{n+1} - u_i^{n-1}}{2\Delta t} + a \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2h} = 0.
\]
Analyze the stability and accuracy of this method.