Real Analysis Ph. D. Comprehensive Exam
August 2011

Do all parts of problem 1, and work 3 of the other 4 problems.

If not explicitly specified, the measure space is \(\mathbb{R} \) with the Borel \(\sigma \)-algebra \(\mathcal{B} \) and Lebesgue measure \(\lambda \).

1. True or false? Justify your answers.

(a) If \((f_n) \) is a sequence of measurable non-negative functions on a measure space \((X, X, \mu)\), then \(\int \sum_{n=1}^{\infty} f_n \, d\mu = \sum_{n=1}^{\infty} \int f_n \, d\mu \).

(b) If \(\mu_1 \) and \(\mu_2 \) are \(\sigma \)-finite measures with \(\mu_1 \ll \mu_2 \), then there exists a \(\mu_2 \)-integrable function \(f \) with \(\mu_1(A) = \int_A f \, d\mu_2 \) for all measurable sets \(A \).

(c) For every \(f \in L^2 \) there exists a sequence of functions \(\phi_n \in L^2 \), vanishing outside \([-n,n]\), such that \(\phi_n \to f \) in \(L^2 \).

(d) For every \(f \in L^\infty \) there exists a sequence of functions \(\phi_n \in L^\infty \), vanishing outside \([-n,n]\), such that \(\phi_n \to f \) in \(L^\infty \).

2. Let \((X, X, \mu)\) be a measure space, and let \((E_k)_{k=1}^{\infty} \) be a sequence of measurable sets such that \(\mu(E_k) \geq 2011 \) for all \(k \in \mathbb{N} \). Let \(E \) be the set of points in \(X \) which belong to \(E_k \) for infinitely many indices \(k \).

(a) Show that \(E \) is measurable.

(b) Under the additional assumption that \(\mu(X) < \infty \), show that \(\mu(E) \geq 2011 \).

(c) Give an example to show that the additional assumption in (b) is necessary.

3. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be a sequence of Borel-measurable functions converging to 0 uniformly, and satisfying \(\int_{\mathbb{R}} |f_n| \, d\lambda \leq 1 \) for all \(n \).

(a) Show that \(f_n \to 0 \) in \(L^p \) for all \(p > 1 \).

(b) Give an example to show that the assumptions do not imply \(f_n \to 0 \) in \(L^1 \).

4. For \(\alpha \geq 0 \) let \(F'(\alpha) = \int_0^1 \frac{x^{\alpha} - 1}{\ln x} \, dx \).

(a) Show that \(F \) is differentiable with \(F'(\alpha) = \frac{1}{\alpha + 1} \).

(b) Use this result to calculate \(\int_0^1 \frac{x - 1}{\ln x} \, dx \).

5. Let \(f \) be a non-negative measurable function on a \(\sigma \)-finite measure space \((X, X, \mu)\).

Show that \(\int_X f \, d\mu = \int_0^\infty \mu(F_t) \, dt \), with \(F_t = \{ x \in X : f(x) > t \} \).