In the following, \(\mathbb{R} \) is the set of real numbers. Every answer to a question in this exam needs a proof.

1. Let \(\tau \) be the collection of subsets \(U \) of \(\mathbb{R} \) such that \(U \supset (0, 1) \), together with the empty set.

 \(\textbf{(a)}: \) Show that \(\tau \) is a topology on \(\mathbb{R} \).

 \(\textbf{(b)}: \) Find the closure of the interval \((0, 1)\) in \((\mathbb{R}, \tau)\).

 \(\textbf{(c)}: \) Find the interior of the interval \((0, 1)\) in \((\mathbb{R}, \tau)\).

 \(\textbf{(d)}: \) Let \((\mathbb{R}, u)\) denote \(\mathbb{R} \) with its usual topology. Is the function \(f : (\mathbb{R}, u) \to (\mathbb{R}, \tau) \) defined by \(f(x) = x \) continuous? Is the function \(g : (\mathbb{R}, \tau) \to (\mathbb{R}, u) \), defined by \(g(x) = x \) continuous?

2. Let \(f : X \to Y \) be a continuous map of Hausdorff spaces. Let \(B_1 \supset B_2 \supset \ldots \supset B_n \supset \ldots \) be a decreasing sequence of compact subsets of \(X \). Prove that

\[
 f\left(\bigcap_{i=1}^{\infty} B_i\right) = \bigcap_{i=1}^{\infty} f(B_i).
\]

3. (a) Show that any continuous \(f : S^2 \to S^1 \times S^1 \) must be null-homotopic (i.e., homotopic to a constant map).

 (b) Show that there is a continuous map \(g : S^1 \times S^1 \to S^2 \) that is not null-homotopic.

4. View the Klein bottle \(K \) as a union of two Mobius bands \(M_1 \) and \(M_2 \) identified along their boundaries. Compute \(H_*(K) \).