Optimal Mutual Information Quantization is NP complete

Brendan Mumey (Computer Science) and
Tomáš Gedeon (Math)

Montana State University - Bozeman

Acknowledgements
Research was supported by NSF BITS grant 0129895.

Quantization Problem

- What is the computational complexity of quantizing a joint (\mathbf{X}, Y) probability distribution in order to maximize the mutual information of the quantization?
- We show this problem is NP-complete via reductions from various forms of the PARTITION problem.

Neural Coding Application

- In the application to neural coding, one models the input to the system as a random variable \mathbf{X} and the output as a random variable \mathbf{Y}.

Stochastic Framework

Random Variables:

- X stimulus (waveform)
- Y neural response (single channel for now)

stimulus $\mathrm{X}=\mathrm{x}$

neural response $\mathbf{Y = y}$
... (X,Y) forms a joint distribution

Cricket Data Set

- Target system: 50-70 neurons comprising the terminal ganglion in crickets
- Each probe recording is a stream of inter-spike distances:

```
stream 1: 3243, 7343, 23433, 322, 8983, 1831, ...
stream 2: 17983, 289, 5934, 2893, 42398, 3985, ...
```

Multiple probes are used to record individual neurons

Example Quantization

Mutual Information

- Given two discrete random variables \mathbf{X} and \mathbf{Y} the mutual information $I(X, Y)$ is defined by

$$
\mathrm{I}(\mathrm{X}, \mathrm{Y})=\sum_{x, y} \operatorname{Pr}(x, y) \log \frac{\operatorname{Pr}(x, y)}{\operatorname{Pr}(x) \operatorname{Pr}(y)}
$$

Joint Quantization

- Fix sizes \mathbf{M} and \mathbf{N} of the reproduction spaces
- Let $A_{M}=\left\{a_{1}, \ldots, a_{m}\right\}$ for X and $B_{N}=\left\{b_{1}, \ldots, b_{n}\right\}$ for Y and define quantizers, $\mathbf{q}\left(\mathbf{a}_{\mathbf{i}} \mid \mathbf{x}\right)$ and $\mathbf{q}\left(\mathbf{b}_{\mathbf{j}} \mid \mathbf{y}\right)$.
- Quantizers are conditional probabilities so $\mathbf{q}\left(\mathbf{a}_{\mathbf{i}} \mid \mathbf{x}\right) \varepsilon \Delta_{\mathrm{M}}$, and $\mathbf{q}\left(\mathbf{b}_{j} \mid \mathbf{y}\right) \varepsilon \Delta_{\mathrm{N}}$, where $\Delta_{K}=\left\{\mathbf{z} \varepsilon \mathbf{R}^{\mathrm{K}} \mid \Sigma_{\mathrm{i}} \mathbf{z}_{\mathrm{i}}=\mathbf{1}, \mathbf{z}_{\mathrm{i}}>=\mathbf{0}\right\}$. Fact: optimal when $\mathbf{z}_{\boldsymbol{i}}=\mathbf{1}$ for some \boldsymbol{i}.
- The distortion function to be minimized is:

$$
I(X, Y)-I\left(A_{M}, B_{N}\right) .
$$

Decision Problem

MxN-QUANT:

Given a joint (\mathbf{X}, Y) probability distribution, decide if there exists quantizers $\mathbf{q}\left(\mathbf{a}_{\mathbf{i}} \mid \mathbf{x}\right)$ and $\mathbf{q}\left(\mathbf{b}_{\mathbf{j}} \mid \mathbf{y}\right)$ of reproduction spaces A_{m} and B_{N} with mutual information $\mathrm{I}\left(\mathrm{A}_{\mathrm{M}}, \mathbf{B}_{\mathrm{N}}\right)$ at least $\boldsymbol{s} \boldsymbol{>} \mathbf{0}$.

The PARTION Problem

- Given a set of real numbers $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$, decide if there is a set of indices \mathbf{S} such that

$$
\sum_{i \in S} r_{i}=\sum_{i \notin S} r_{i}
$$

- Generalized k-PARTITION problem: Find index sets $\left\{S_{1}, \ldots, S_{k}\right\}$ such that for any $1<=u, v<=k$:

$$
\sum_{k \in s_{0}} r_{i}=\sum_{k \in s_{1}} r_{1} r_{i}
$$

Lemma 1

- Lemma: Consider a joint quantization problem with $\mathbf{M}=\mathbf{N}=\boldsymbol{k}>=\mathbf{2}$. Then $\mathrm{I}\left(\mathrm{A}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}\right)<=\boldsymbol{\operatorname { l g }} \mathbf{k}$ bits with equality achieved only when there exists $\mathbf{q}\left(\mathbf{a}_{\mathbf{i}} \mid \mathbf{x}\right)$ and $\mathbf{q}\left(\mathbf{b}_{\mathbf{j}} \mid \mathbf{y}\right)$ such that:

$$
\operatorname{Pr}\left(a_{i}, b_{j}\right)=\left\{\begin{array}{cc}
1 / k & \text { if } \mathrm{i}=\mathrm{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof of Lemma 1

Observe $\mathrm{I}\left(\mathrm{A}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}\right)<=\min \left(\mathrm{H}\left(\mathrm{A}_{\mathrm{k}}\right), \mathrm{H}\left(\mathrm{B}_{\mathrm{k}}\right)\right)$.
Since $I\left(A_{k}, B_{k}\right)=H\left(A_{k}\right)-H\left(B_{k} \mid A_{k}\right)=H\left(B_{k}\right)-H\left(A_{k} \mid B_{k}\right)$, equality is achieved when $\mathbf{H}\left(B_{k} \mid A_{k}\right)=\mathbf{H}\left(A_{k} \mid B_{k}\right)=0$ and $H\left(A_{k}\right)=H\left(B_{k}\right)=\lg k$.

A random variable with \mathbf{k} outcomes achieves a maximum entropy of $\mathbf{l g} \mathbf{k}$ bits only if each outcome equally likely and so $p\left(a_{i}\right)=p\left(b_{j}\right)=1 / k$. We have

$$
\begin{aligned}
& \mathrm{I}\left(\mathrm{~A}_{\mathrm{k}}, \mathrm{~B}_{\mathrm{k}}\right) \quad=\sum_{i, j} \mathrm{p}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{j}}\right) \lg \left[\mathrm{k}^{2} \mathrm{p}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{j}}\right)\right] \\
& =2 \lg \mathrm{k}+\sum_{\mathrm{i}} \sum_{j} \mathrm{p}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{j}}\right) \lg \mathrm{p}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{~b}_{\mathrm{j}}\right)
\end{aligned}
$$

since $\Sigma_{\mathrm{ij}} \mathbf{p}\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{j}}\right)=\mathbf{1}$.
Given the constraints $\Sigma_{j} \mathbf{p}\left(\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{j}}\right)=\mathbf{1 / k}$ and the fact that $\mathbf{x} \lg \mathbf{x}$ is convex, the inner sum is maximized exactly when $p\left(a_{i}, b_{j}\right)=1 / k$ for one value of j and the remaining probabilities are $\mathbf{0}$.
Given the constraint $\Sigma_{i} p\left(a_{i}, b_{j}\right)=\mathbf{1} / \mathbf{k}$ it follows that if $p\left(a_{i}, b_{j}\right)=\mathbf{1} / \mathbf{k}$ then $p\left(\mathbf{a}_{u}, b_{j}\right)=p\left(\mathbf{a}_{\mathrm{i}}, \mathbf{b}_{\mathrm{v}}\right)=\mathbf{0}$ for all $\mathbf{u}!=\mathrm{i}$ and $\mathrm{v}!=\mathbf{j}$.
By permuting the class labels appropriately the lemma is proven.

Reduction

- Let $R=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ be an instance of $k-P A R T I T I O N$.
- Let $\mathbf{r}=\Sigma \mathbf{r}_{\mathbf{i}}$.
- Consider the following $\mathbf{n} \times \mathbf{n}$ joint distribution:

$$
\operatorname{Pr}(X, Y)=\left[\begin{array}{cccc}
r_{1} / r & 0 & \cdots & 0 \\
0 & r_{2} / r & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & r_{n} / r
\end{array}\right]
$$

Main Theorem

Theorem: \mathbf{R} can be \mathbf{k}-partitioned if and only there exists a joint quantization $\left(\mathbf{A}_{\mathbf{k}}, \mathbf{B}_{\mathbf{k}}\right)$ of (\mathbf{X}, \mathbf{Y}) with Ig \mathbf{k} bits of mutual information.
Proof:
"=>" : just pick quantization classes corresponding to partitions
"<=" : Lemma 1 implies that the optimal quantizer will partition (\mathbf{X}, Y) into equally weighted classes. Can easily recover a \mathbf{k}-partition of \mathbf{R} from this.

Open Problems

- Constant factor approximation? - PTAS?

