Optimal Mutual Information Quantization is NP complete

Brendan Mumey (Computer Science) and Tomáš Gedeon (Math)

Montana State University – Bozeman

Acknowledgements

Research was supported by NSF BITS grant 0129895.

Quantization Problem

- What is the computational complexity of quantizing a joint **(X,Y)** probability distribution in order to maximize the mutual information of the quantization?
- We show this problem is NP-complete via reductions from various forms of the PARTITION problem.

Neural Coding Application

• In the application to neural coding, one models the input to the system as a random variable **X** and the output as a random variable **Y**.

Stochastic Framework

Random Variables:

- X stimulus (waveform)
- Y neural response (single channel for now)

stimulus **X=x**

neural response Y=y

... (X,Y) forms a joint distribution

Cricket Data Set

- Target system: 50-70 neurons comprising the terminal ganglion in crickets
- Each probe recording is a stream of inter-spike distances:

stream 1: 3243, 7343, 23433, 322, 8983, 1831, ... stream 2: 17983, 289, 5934, 2893, 42398, 3985, ...

Multiple probes are used to record individual neurons

Example Quantization

Mutual Information

 Given two discrete random variables X and Y the mutual information I(X,Y) is defined by

$$I(X,Y) = \sum_{x,y} \Pr(x,y) \log \frac{\Pr(x,y)}{\Pr(x)\Pr(y)}$$

Joint Quantization

- Fix sizes **M** and **N** of the reproduction spaces
- Let A_M = {a₁, ..., a_m} for X and B_N = {b₁, ..., b_n} for Y and define quantizers, q(a_i|x) and q(b_j|y).
- Quantizers are conditional probabilities so q(a_i|x) ε Δ_M, and q(b_j|y) ε Δ_N, where Δ_K = {z ε R^K | Σ_i z_i = 1, z_i >= 0}. <u>Fact</u>: optimal when z_i = 1 for some i.
- The distortion function to be minimized is:

Decision Problem

MxN-QUANT:

Given a joint (X,Y) probability distribution, decide if there exists quantizers $q(a_i|x)$ and $q(b_j|y)$ of reproduction spaces A_M and B_N with mutual information $I(A_M, B_N)$ at least s > 0.

The PARTION Problem

 Given a set of real numbers R = {r₁, r₂, ..., r_n}, decide if there is a set of indices S such that

$$\sum_{i\in S} r_i = \sum_{i\notin S} r_i$$

 Generalized k-PARTITION problem: Find index sets {S₁, ..., S_k} such that for any 1 <= u, v <= k:

$$\sum_{i\in S_u} r_i = \sum_{i\in S_v} r_i$$

Lemma 1

 Lemma: Consider a joint quantization problem with M=N=k >= 2. Then I(A_k,B_k) <= Ig k bits with equality achieved only when there exists q(a_i|x) and q(b_j|y) such that:

$$Pr(a_i, b_j) = \begin{cases} 1/k & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Proof of Lemma 1

Observe $I(A_k, B_k) \le min(H(A_k), H(B_k))$. Since $I(A_k, B_k) = H(A_k) - H(B_k | A_k) = H(B_k) - H(A_k | B_k)$, equality is achieved when $H(B_k | A_k) = H(A_k | B_k) = 0$ and $H(A_k) = H(B_k) = Ig k$.

A random variable with **k** outcomes achieves a maximum entropy of **Ig k** bits only if each outcome equally likely and so $p(a_i) = p(b_j) = 1/k$. We have

$$I(A_{k}, B_{k}) = \sum_{i,j} p(a_{i}, b_{j}) lg[k^{2} p(a_{i}, b_{j})]$$

= 2 lg k + $\sum_{i} \sum_{j} p(a_{i}, b_{j}) lg p(a_{i}, b_{j})$

since $\Sigma_{ij} \mathbf{p}(\mathbf{a}_i, \mathbf{b}_j) = 1$.

Given the constraints $\Sigma_j \mathbf{p}(\mathbf{a}_i, \mathbf{b}_j) = 1/\mathbf{k}$ and the fact that $\mathbf{x} \ \mathbf{lg} \ \mathbf{x}$ is convex, the inner sum is maximized exactly when $\mathbf{p}(\mathbf{a}_i, \mathbf{b}_j) = 1/\mathbf{k}$ for one value of \mathbf{j} and the remaining probabilities are $\mathbf{0}$.

Given the constraint $\Sigma_i \mathbf{p}(\mathbf{a}_i, \mathbf{b}_j) = 1/k$ it follows that if $\mathbf{p}(\mathbf{a}_i, \mathbf{b}_j) = 1/k$ then $\mathbf{p}(\mathbf{a}_u, \mathbf{b}_j) = \mathbf{p}(\mathbf{a}_i, \mathbf{b}_v) = \mathbf{0}$ for all $\mathbf{u} = \mathbf{i}$ and $\mathbf{v} = \mathbf{j}$.

By permuting the class labels appropriately the lemma is proven.

Reduction

- Let R = {r₁, r₂, ..., r_n} be an instance of k-PARTITION.
 Let r = Σ r_i.
- Consider the following **n x n** joint distribution:

Main Theorem

<u>Theorem</u>: **R** can be **k**-partitioned if and only there exists a joint quantization (**A**_k,**B**_k) of (**X**,**Y**) with **Ig k** bits of mutual information.

Proof:

- "=>" : just pick quantization classes corresponding to partitions
- "<=" : Lemma 1 implies that the optimal quantizer will partition (X,Y) into equally weighted classes. Can easily recover a k-partition of R from this.

Open Problems

- Constant factor approximation?
- PTAS?