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Tomáš Gedeon
Department of Mathematics, Montana State University

Bozeman, MT 59715,
Graham Cummins

Department of Mathematics, Washington State University,
and

Jeffrey J. Heys
Chemical and Biological Engineering Department, Montana State University

Bozeman, MT 59715

April 30, 2012

Abstract

One of the the current challenge for cell biology is understanding of the system
level cellular behavior from the knowledge of a network of the individual sub-cellular
agents. We address a question of how the model selection affects the predicted dynamic
behavior of a gene network. In particular, for a fixed network structure, we compare
protein-only models with models in which each transcriptional activation is represented
both by mRNA and protein concentrations. We compare linear behavior near equilibria
for both cyclic feedback systems and a general system. We show that, in general,
explicit inclusion of the mRNA in the model weakens the stability of equilibria. We
also study numerically dynamics of a particular gene network and show significant
differences in global dynamics between the two types of models.
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1 Introduction

As the first decade of the post-genomic era draws to a close, many potential benefits of
the human genome project for the medical field are yet to be realized. Knowledge of the
elementary building blocks (genes) is necessary, but not sufficient, for understanding the
function of cells. Additionally, it is necessary to integrate the qualitative knowledge of gene
interaction into a set of workable predictions of cell function. This is a complex task, and a
key role is being played by mathematical and computational modeling.
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Experimental observations of gene regulation are often represented by a graph of interac-
tions that describe whether a particular transcription factor up- or down- regulates a target
gene. While this qualitative information is common, quantitative measurements of essen-
tial parameters like binding strengths, transcription and translation rates, and decay rates
are harder to come by. Unlike mathematical models in classical physics, where the models
express a particular physical law and the parameters have clear physical meaning and are
measurable, the models in biology are always an approximation of a more complex, hidden,
physical and chemical reality. Under these conditions, conclusions of any biological model
can be trusted only if the same conclusions can be drawn from multiple models that are
compatible with the available data.

In this situation, model selection is a crucial issue in constructing a model of a gene
regulation network. The first choice is the type of the model. Is it reasonable to consider
a stochastic model of some system behavior, or alternately a deterministic model, which
explicitly tracks chemical concentrations? Deterministic models may also include the spatial,
as well as temporal variation of concentrations. In this paper, we consider a deterministic
model without spatial dependence; particularly a system of ordinary differential equations
modeling the time evolution of chemical concentrations. We then investigate the next choice
facing a modeler: Which chemical species are to be included in the model?

In general, the network of relevant interactions includes both proteins and signaling
molecules. The interactions in the network may include protein-protein interactions, post-
translational modifications like phosphorylation and methylation, and transcriptional regu-
lation, in which a protein up-regulates production of the mRNA for another protein. We
consider networks in which transcriptional regulation is the dominant interaction. In such
a case, should we model both concentrations of protein and mRNA, or is it sufficient to
model the concentrations of the proteins? Both strategies are in use. For example, some
models of somitogenesis, where oscillation of gene expression plays a key role, use only pro-
tein concentration ([2]) and others use both protein and mRNA concentrations ([11, 16]). A
common argument for choosing only the protein concentrations is that mRNA decay rates
are typically an order of magnitude larger than those of the proteins and therefore the time
evolution of the mRNA may not be important. The goal of this paper is to critically examine
this argument in several contexts.

We first analyze loss of stability of an equilibrium via a Hopf bifurcation in negative cyclic
feedback systems, which are a class of systems that often arise in models of biochemical
oscillations ([9, 3]). We show that the addition of mRNA to such a protein network model
can destabilize the equilibrium.

Next we generalize this observation to equilibria of a more general protein network. We
consider a model with a single decay rate for all proteins, a single decay rate for all mRNAs,
and a single rate of protein production. The nonlinear functions that specify production of
mRNA, based on promoter dynamics, are arbitrary. We find that there is always a subset
of complex numbers with negative real part, such that if an eigenvalue of a protein-only
network lies in this area, a corresponding eigenvalue of the model, that also includes mRNA,
has positive real part. This shows that the inclusion of the mRNA may, in general, destabilize
an equilibrium. Interestingly, equilibria with real eigenvalues are more difficult to destabilize
than with eigenvalues with imaginary parts.

Additionally, if the protein production rate is smaller than the mRNA production rate,
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there exists another, smaller, region of complex numbers with positive real part, such that
if an eigenvalue of the protein-only model lies here, the corresponding eigenvalues of the
mRNA model have negative real part. Under these unlikely conditions, adding mRNA may
have a stabilizing effect.

Finally, we numerically analyze the global dynamics of a recent model by Yang et.al. [25].
This model has been used to analyze correspondence between a cyclic feedback oscillator (the
repressilator) and a relaxation type oscillator. Yang’s model considers only concentrations
of proteins and a signaling molecule. We compare it to an equivalent model that includes
mRNA concentrations as well. We show that the bifurcation diagram for the protein only
network is qualitatively different from the bifurcation diagram for for the model including
mRNA, and the amplitude profile of oscillations is quantitatively different. Using singular
perturbation theory we study this system in two limits; when protein turnover is much faster
that that of mRNA and when the mRNA turnover is much faster than that of protein. In
both cases there is a slow manifold in the combined model with its slow dynamics mimicking
the dynamics of the protein only network. However, when the mRNA turnover is about
ten times faster than the protein turnover, which is the biologically realistic ratio, there are
significant differences in both local and global dynamics between the protein only model and
the model that also includes mRNA. These results illustrate the main message in this paper;
that conclusions drawn from a network model should be used with caution, and with an
understanding that reasonable changes in the model may lead to different conclusions.

Our work only starts an exploration of the effect of model selection on model-based
predictions of the dynamics of gene regulation systems. We hope our results will contribute to
a more complete theory that can guide modelers in this fast developing area of mathematical
biology.

2 Basic model

We will ask the general question whether, and to what extent, the dynamics of a gene
regulatory network model considering only protein concentrations are the same as those of
an extended model including both mRNA and protein concentrations. For simplicity we
assume that the production of the proteins from mRNA follows a linear ODE [3, 4], and all
the interactions between proteins are mediated through interaction on the gene promoters.
In particular, we want to compare the dynamics of

ẋ1 = f1(x1, . . . , xn)− d1x1

...
...

ẋn = f(x1, . . . , xn)− dnxn (1)
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with the dynamics of a more complicated model

ẋ1 = c1y1 − d1x1

ẏ1 = f1(x1, . . . , xn)− b1y1

...
... (2)

ẋn = cnyn − dnxn
ẏn = f(x1, . . . , xn)− bnyn.

The variables xi represent concentration of the i-th protein and yi the concentrations of the
i-th mRNA. The nonlinearities fi are typically Hill type rational functions, and may be the
result of a more complex model of promoter occupancy ([21, 7, 8]).

We first note that the equilibria of (1) satisfy

fi(x1, . . . , xn) = dixi for all i

while equilibria of (2) satisfy

fi(x1, . . . , xn) =
bi
ci
dixi for all i. (3)

Since the functions fi are typically sigmoidal, even this small change can lead to different
numbers of equilibria in the system. However, we note that

Lemma 2.1 1. If bi = ci for all i then (x1, . . . , xn) is an equilibrium of (1) if, and only
if, (x1, x1, x2, x2, . . . , xn, xn) is an equilibrium of the system (2).

2. If (0, 0, . . . , 0) is an equilibrium of (1) then it is also an equilibrium of (2), for any
values of bi and ci.

In particular, an assumption of a much faster turnover of mRNA, modeled by assuming
ci = di = ε, does not automatically lead to comparable equilibria in (1) and (2).

We will show that even when the equilibria are comparable, their stability can change
dramatically when the model changes from (1) to (2).

3 Results

3.1 A simple feedback loop

As a first example we study a class of models called cyclic feedback systems. An early syn-
thetic biology construct that produces oscillations in live cells, known as the repressilator [3],
can be modeled as a negative cyclic feedback system. In the repressilator construct, three
transcriptional regulators A,B and C each repress expression of a the next regulator: A re-
presses B, B represses C and C represses A. Ellowitz and Leibler [3] and later Garcia-Ojalvo
et. al. [4] chose to model the repressilator using both the concentrations of proteins (A,B,C)
and the concentrations of the corresponding mRNAs (a,b,c). A model that considers only
protein concentrations is also possible, of course ([25]).
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A cyclic feedback system has the form

ẋ1 = δa1f1(xn)− d1x1, (4)

ẋi = aifi(xi−1)− dixi, i = 2, . . . , n

where di > 0, ai > 0 for all i = 1, . . . , n. In biological models where the variables denote
non-negative concentrations, the functions fi usually include constant terms, which model
background expression of the given protein. Thus the system admits a non-negative equi-
librium. To simplify our discussion we shift the variables in such a way that one of this
equilibria is at the origin. In the new coordinates we assume that the functions fi satisfy
either

dfi
dxi−1

(xi−1) > 0 for all xi−1 (5)

or a weaker condition
xi−1fi(xi−1) > 0 for all xi−1 6= 0. (6)

In the second case we call the system a cyclic feedback system; in the first case a monotone
cyclic feedback system. We can also assume without loss that dfi

dxi−1
(0) = 1, since ai are

arbitrary.
The constant δ = ±1 determines whether the system is positive or a negative cyclic

feedback system. We note that a more general system where in each equation we can chose
a sign of the interaction δi, can be put into the form (4) by a simple change of variables [12,
5]. Then the overall feedback sign δ = δ1δ2 . . . δn is a product of the individual signs.
In particular, the repressilator is a negative feedback system since the overall feedback is a
product of 3 negative feedbacks A→ b, B → c and C → a, representing regulation of mRNA;
and 3 positive feedbacks a → A, b → B and c → C, representing protein production from
mRNA. Observe that if we chose to model only protein concentrations in the repressilators,
there would be 3 negative feedbacks A → B,B → C and C → A, again resulting in a
negative feedback. Note that the origin is a unique equilibrium in the negative monotone
cyclic feedback system [5].

The variables xi in (4) describe concentrations of proteins. We now introduce the enlarged
system where for each species we also consider the concentration of mRNA.

ẏ1 = −b1y1 + δa1f1(xn)

ẋ1 = −d1x1 + c1y1 (7)

ẏi = −biyi + aifi(xi−1) i = 2, . . . , n

ẋi = −dixi + ciyi, i = 2, . . . , n.

We see that the basic cyclic structure of the feedback system has not changed and, as in the
repressilator example, the sign of the feedback remains the same.

The dynamics of cyclic feedback systems are known in great detail [13, 5, 6, 14]. Here
we discuss a Hopf bifurcation, which is relevant to emergence of oscillations in biological
systems. The linearization of the system (4) has the form

ẋ = (A−D)x
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where D = diag(d1, . . . , dn) and A is a matrix where the entries ai, i = 2, . . . , n lie in the
matrix position (i, i − 1), and a1 in the position (1, n). The linearization of the system (7)
is a linear system

ż = (W −Q)z

where z = (x1, y1, . . . , xn, yn) is a combination of vectors x and y, Q = diag(b1, d1, b2, d2, . . . , bn, dn)
and non-zero entries ci, ai lie in the same off-diagonal pattern in matrix W , as the pattern
formed by entries ai in the matrix A.

A following sufficient condition for stability of equilibria was proved in [24, 23], see also
([5, 1, 22]).

Theorem 3.1 All eigenvalues of the matrix A−D have negative real part, if

a1a2 . . . , an
d1d2 . . . dn

<
1

cos(π/n)n
. (8)

This condition is necessary, when d1 = d2 = . . . dn.

Corollary 3.2 Assume c1,...,cn
b1,...,bn

≥ 1. Then if the equilibrium (0, . . . , 0) is stable in (7), then

it is stable in (4). The opposite implication is not true.

Proof. The condition equivalent to (8) for the larger system (7) reads

a1a2 . . . , anc1 . . . cn
d1d2 . . . dn, b1, . . . , bn

<
1

cos(π/2n)2n
.

If c1,...,cn
b1,...,bn

≥ 1 then we have an estimate

a1a2 . . . , an
d1d2 . . . dn

≤ a1a2 . . . , anc1 . . . cn
d1d2 . . . dn, b1, . . . , bn

<
1

cos(π/2n)2n
<

1

cos(π/n)n
,

which verifies the secant condition for (4). The second part of the proof follows from the
fact that the condition (8) is sharp, when the diagonal matrix is a multiple of the identity.
�

Therefore the equilibrium stability condition for the larger system (7) is more restrictive
than the stability condition for the simpler system (4). Note that the assumption of the
corollary is satisfied, for the negative cyclic feedback system, if the protein production rate
ci is greater or equal to the mRNA decay rate bi. We conclude that in this case the addition
of mRNA into the model makes the equilibrium less stable.

3.2 Stability of equilibria in a general system

In this section we address the relationship between the stability of equilibria in the more
general systems (1) and (2). Linearization of (1) at an equilibrium E has the form

ẋ = Ax−Dx (9)
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where D = diag(d1, . . . , dn) and

A =
df

dx
|E (10)

is the linearization of f at an equilibrium E. Changing system (1) to the larger system (2)
changes, in general, the equilibrium E to a different equilibrium Ē. The linearization of (2)
at Ē is

ẋ = Cy −Dx
ẏ = Āx−By, (11)

where B = diag(b1, . . . , bn), C = diag(c1, . . . , cn) and

Ā =
df

dx
|Ē.

The relationship between E and Ē, and therefore A and Ā, depends on the details of the
system. However, under conditions specified in Lemma 2.1 we have A = Ā and we can
compare stability of the corresponding equilibria in (1) and (2). To do so we relate each
eigenvalue z of the problem (9) to a pair of eigenvalues λ± of the problem (11).

Theorem 3.3 Consider linear systems (9) and (11) with A = Ā. Assume that di = d >
0, bi = b > 0 and ci = c > 0 for all i. Then there is an open unbounded region U of complex
numbers with negative real part, such that if an eigenvalue z of (9) lies in U , then there is a
corresponding pair of eigenvalues of (11) λ± such that λ− has negative and λ+ has a positive
real part (see Figure 1). In addition,

1. When c
b
> 1, the set U meets the real axis in a non-empty set

U ∩ <e = {x+ iy | x ∈ ((
b

c
− 1)d, 0), y = 0}.

2. if c
b

= 1, then
cl(U) ∩ <e = {0}.

3. If c
b
< 1 then there is another, bounded region V of complex numbers with positive real

part, such that if an eigenvalue z of (9) lies in V , then both corresponding eigenvalues
of (11) λ± have negative real parts. Furtermore,

V ∩ <e = {x+ iy | x ∈ (0, (
b

c
− 1)d), y = 0}.

The existence of the set U generalizes the result from the cyclic feedback system in
Corollary 3.2: the addition of mRNA can destabilize equilibria in the model. We note that
in the case when b = c only non-real eigenvalues z lie in U . This means that when b = c
and an equilibrium has only real eigenvalues, its stability in (9) and (11) is the same. This
clearly does not imply that the number of eigenvalues with positive or negative real part are
the same, since the models have different dimensionality.

When c < b there is an additional small region V in the positive half of the complex
plane, such that when an eigenvalue z of (9) lies in this region, then the addition of mRNA
has a stabilizing effect.
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(a) (b)

Figure 1: (a) Region U for b = c = 1 and d = 4 (dark). If an eigenvalue of the problem (9)
is in U, then one of the corresponding eigenvalues λ+ of the problem (11) has a positive real
part. Region V is empty. (B) Region U (grey) and a region V (red) for b = 2, c = 1 and
d = 4. The region V is bounded and intersects the real axis, while the region U is unbounded
and does not.

3.2.1 Singular limit

In this section we consider a singular limit where the protein turnover is much slower than
that of the mRNA. Note that this assumption implies that both the production and the decay
of proteins is slower than production and decay of mRNA. Since the lifetime of mRNA’s is
on the order of minutes and and the lifetime of proteins can be on the order of hours, the
assumption that the decay rate of proteins is much lower that that of mRNA is justified.
However the rates of production of mRNA and proteins are much closer together, since they
are linked by the process of translation.

The usual way that the faster turnover of mRNA is modeled is to introduce a small
parameter ε that multiplies both the protein production and decay terms.

ẋ = ε(Cy −Dx)

ẏ = Ax−By. (12)

We replace c → εc and d → εd in the analysis above. In particular we see that the
boundary of the region W1 = W1(ε) is formed by the line εd and thus it converges to the
imaginary axis as ε→ 0. The bound (26) on the set Y = Y (ε) takes the form

u > 2
(b+ εd)2

(1 + cos θ)

while the set is X(ε) = Y (ε)−(εd−b)2. Note that the set X(ε) does have a limiting parabolic
shape X(0) = Y (0) − b2 which has an apex at (0, 0) and Y (0) is given by u > 2 b2

(1+cos θ)
.

However, since Reiφ ∈ X if, and only if, 4cεreiφ ∈ W2, the lower bound that defines W2 goes
to ∞ along any ray, θ = const. This not only shows that in the limit ε → 0 we recover the
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stability of the system (9), but also that for each fixed ε 6= 0 there is an unbounded region
U(ε) in the complex plane where the stability under (9) does not agree with stability under
(11).

Finally, when b 6= c as in (12), the linearization (9) of the problem (1) occurs at a
potentially different equilibrium than the linearization (11) of the problem (2). Our analysis
in the previous paragraph does not address this issue.

3.3 Analysis of a genetic oscillator

In the previous sections we concentrated on the stability of the equilibria and a Hopf bifur-
cation. In this section we will consider the global oscillatory dynamics of a gene network.

In a recent paper [25] the authors analyze a simple network of three molecular species.
Their model is motivated by the desire to study two mechanisms that were identified pre-
viously in conjunction with models of periodic behavior. The negative cyclic feedback we
considered in the section 3.1 can generate oscillations in live cells [3]. An apparently differ-
ent mechanism is driving the cell cycle in early embrios [17, 18, 19, 20]. This mechanism is
characterized by abrupt transitions, and includes processes occurring on multiple timescales,
reminiscent of a relaxation oscillator. Although these mechanisms are not mutually exclu-
sive, several articles ([4, 10, 15]) have attempted to characterize phenomena as being modeled
by one or the other limit, and have drawn contrasts between them in terms of their response
to noise, and the synchronization behavior of groups of them. In [25] the authors studied a
three species model that is capable of simulating the behavior of both a repressilator and a
relaxation oscillator at different parameter values, and can also show intermediate behaviors.
Their system is described by:

ẋ1 =
α1

1 + xn2
− x1

ẋ2 =
α1

1 + xn3
+

α2

1 + xn1
− x2 (13)

ẋ3 = ε(
α1

1 + xn1
− x3)

When α2 << 1 and ε = O(1) the system models the cyclic feedback system (repressilator),
while when α2 = O(1) and ε << 1, the system exhibits relaxation oscillations.

Yang et.al [25] provide a detailed bifurcation analysis of this oscillator as a function of
parameters α2 and ε, when n = 3, α1 = 5. In Figure 2.a we show the region in this parameter
space where the system (13) exhibits stable oscillations. The upper and lower boundaries
are curves of Hopf bifurcations, while the vertical part of the boundary is a saddle-node
bifurcation on a periodic orbit (SNIC). The two dashed lines on the right are saddle node
bifurcations of equilibria. The model exhibits three equilibria between these lines and one
equllibrium outside of these lines. The boundary piece connecting the upper Hopf curve to
the SNIC curve is a locus of homoclinic bifurcations. For more details on the analysis the
reader is referred to the original paper.

In the model of Yang et.al [25] the first two equations represent protein concentrations
while the third represents a soluble small molecule. With this in mind we would like to
compare the dynamics of (13) to a system where we replace each of the first two equations
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with a pair of equations that model both mRNA and protein concentrations. Our model has
the form:

ẏ1 =
α1

1 + xn2
− b1y1

ẋ1 = c1y1 − d1x1

ẏ2 =
α1

1 + xn3
+

α2

1 + xn1
− b2y2 (14)

ẋ2 = c2y2 − d2x2

ẋ3 = ε(
α1

1 + xn1
− x3).

The variables y1 and y2 represent concentrations of mRNA, and x1, x2 concentrations of
the same proteins as in (13). Since we would like to compare this model to (13), we would
like to ensure that it has the “same” equilibria, in the sense of Lemma 2.1. Therefore we
choose the mRNA decay rates b1 = b2 = 1, and set all the protein production rates ci equal
to the decay rates di. Additionally, we select n = 3, α1 = 5, to match choices in [25].

A principal argument against needing to explicitly model mRNA dynamics in this way
is the different characteristic time scale of mRNA compared to protien processes. Conse-
quently, we are interested in investigating the effects of using different timescales for these
components. To facilitate this investigation, we add rate parameters Rp, Rm, which scale the
rates of protein, and mRNA processes respectively. This, combined with the constraints on
the constants b, c, d, n, α1, results in the model:

ẏ1 = Rm(
5

1 + x3
2

− y1)

ẋ1 = Rp(y1 − x1)

ẏ2 = Rm(
5

1 + x3
3

+
α2

1 + x3
1

− y2) (15)

ẋ2 = Rp(y2 − x2)

ẋ3 = ε(
5

1 + x3
1

− x3)

This choice of parameters is somewhat redundant, since we would only need a single
rate scaling parameter to change the relative rates of mRNA and protein processes, but the
use of an extra parameter simplifies the model conceptually. We note that the parameter ε
changes the system dynamics by changing the ratio of large molecule rates (ẋ1, ẋ2) to the the
small molecule rate ẋ3. When we model the large molecule processes with separate mRNA
and protein steps, the overall rate of this component is determined by the slower of these
two processes. Consequently, when we vary Rp and Rm the effect of ε on system dynamics
is scaled by min(Rp, Rm). Using two explicit parameters, as we do here, allows us to vary
the relative rates of protein and mRNA steps, while maintaining a constant rate of the
whole large molecule component, by constraining min(Rp, Rm) = 1. This constraint renders
absolute values of ε comparable between different tested conditions. This also applies to
comparisons that depend on absolute time, such as oscillation frequency.
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Beginning with the case where protein and mRNA components have similar rates, Rp =
Rm = 1, we compare a bifurcation diagram in parameters α2 and ε of model (13) to the
same diagram for (15). The results are shown in Figure 2.a and b respectively. While the
boundaries of the diagrams in Figures 2.a and 2.b have some similarities, there are important
quantitative and qualitative differences. The most striking qualitative difference is that the
oscillatory region is bounded in ε for small α2 in the protein only model (Figure 2.a), but
seems to be unbounded in model (15) (Figure 2.c). We have observed oscillations all the
way to ε = 1000 (data shown only to ε = 3). The main quantitative differences notable
in Figure 2a and b are the position of the lower Hopf bifurcation curve (much lower in
Figure 2.b) and lower position of the cusp on the right. Additionally, even where both models
show stable oscillations, the amplitudes of these oscillations sometimes differ substantially
(see Figure 3.a and b, and the description of this figure in the following section).

3.3.1 Fast protein dynamics

We now analyze the situation when Rm = 1 and Rp >> 1 in model (15), which corresponds
to protein turnover that is much faster than that of mRNA. Although this case is not
biologically realistic, we consider it because as Rp →∞, there is a detailed and well defined
correspondence between the global dynamics of (13) and (15). As is clear from the argument
below, similar result holds for the more general model (14). Indeed, writing ζ = 1/Rp << 1
(and fixing Rm = 1) the system (15) becomes

ẏ1 =
5

1 + x3
2

− y1

ζẋ1 = y1 − x1

ẏ2 =
5

1 + x3
3

+
α2

1 + x3
1

− y2

ζẋ2 = y2 − x2

ẋ3 = ε(
5

1 + x3
1

− x3).

Setting ζ = 0 we obtain a 3-dimensional invariant slow manifold in R5 given by

M := {(y1, x1, y2, x2, x3) | y1 = x1, y2 = x2}

on which the dynamics is given precisely by the system (13).
Our numerical simulations confirm this conclusion. With Rp = 2000 protein turnover is

three orders of magnitude faster than that of mRNA, and protein concentrations are strongly
slaved to the mRNA dynamics. In this limit, our model yields the bifurcation diagram shown
in Figure 2.c, which is essentially identical to the bifurcation diagram of model (13), shown in
Figure 2.a. Additionally, the amplitude profile of oscillations in model (15) with Rp = 2000
(shown in Figure 3.a) is visually identical to the corresponding profile of model (13) (this
image is not shown). We note that there is a relatively smooth transition from the behavior
shown in Figure 2.b to that seen in Figure 2.c as Rp scales from 1 to 2000. Significant
differences in the bifurcation structures remain evident for values of Rp up to about 400, and
perceptible differences remain up to Rp ≈ 1500 (data not shown).
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In Figure 3 we show the oscillatory regions of (15), including both the bifurcation diagram
(as in Figure 2) and also the amplitudes of oscillations within the oscillatory region, measured
as described in Section 5.2. This gives a more complete picture of quantitative changes in
system behavior. Figure 3.a shows the case Rp = 2000, and has visually identical behavior
to the protein-only model (13) (we omit the identical plot generated by the simple model,
to conserve space). Figure 3.b shows the case of model (15) with Rp = Rm = 1. We see
that in addition to changes in the region of stable oscillations, even in areas of the parameter
space where both models show stable oscillation, the quantitative nature of these oscillations
may be quite different. Particularly, for α2 ≤ 1, ε < .5, there are several regions where both
models oscillate, but the oscillation in the protein-only model has much smaller amplitude
than observed in the model that includes mRNA. This region of the parameter space is
potentially quite important to biologically realistic relaxation-type oscillators, and thus this
quantitative difference may be at least as important to real systems as the changes in the
bifurcation structure.

(a) (b) (c)

Figure 2: Shaded region in the parameter space exhibits stable oscillations. (a) three dimen-
sional protein only network (13) of Yang et.al [25]; (b) Protein and mRNA system (15), with
similar protein and mRNA process rates (Rp = Rm = 1); (c) protein and mRNA system
(15) with very fast protein rates (Rp = 2000).

3.3.2 Fast mRNA dynamics

We now consider the more biologically realistic situation when mRNA has faster production
and decay rates than the protein. In this case, we fix Rp = 1, and increase Rm. To investigate
the correspondence between the dynamics of (13) and (15) for large Rm, we set δ = 1/Rm
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and then let δ = 0. The system (15) then takes the form

0 =
5

1 + x3
2

− y1

ẋ1 = y1 − x1

0 =
5

1 + x3
3

+
α2

1 + x3
1

− y2

ẋ2 = y2 − x2

ẋ3 = ε(
5

1 + x3
1

− x3),

The slow manifold, parameterized by (x1, x2, x3), is a three dimensional manifold in a five
dimensional space, given by

y1 =
5

1 + x3
2

, y2 =
5

1 + x3
3

+
α2

1 + x3
1

. (16)

Substituting (16) into the second, fourth and fifth equations yields slow dynamics which
are identical to (13). The dynamics of the full system (15) with Rp = 1 and Rm >> 1 show
a rapid relaxation towards this slow manifold.

We conclude that in both limits of fast protein turnover (Rp >> 1 and Rm = 1) and
fast mRNA turnover (Rp = 1 and Rm >> 1), the dynamics on the slow manifold are the
dynamics of (13). However, we now show that for a realistic ratio of protein to mRNA
turnover the dynamics differ significantly from those of (13).

Figure 3.c and d show the bifurcation structure and oscillation amplitudes for two cases
where Rp = 1, Rm > 1. Figure 3.c is the most biologically realistic case, with Rm =
10, mRNA dynamics one order of magnitude faster than protein dynamics. Comparing to
Figure 3.a (Rp = 2000, behavior equivalent to the protein only model), we see significant
differences in the position of the upper Hopf curve, which bounds the oscillatory region
in the direction of increasing ε. There are also substantial quantitative differences in the
amplitudes of oscillations at many parameter values within the oscillatory region. Figure 3.d
shows the case of mRNA 2000 times faster than proteins. This is a much higher ratio of
mRNA to protein rate than is found in most real systems. Here, the differences in the shape
of the oscillatory region compared to the simplified model are substantially reduced. Since
the boundaries of this region are mostly determined by Hopf bifurcation curves, which are
computed from linearization at the set of equilibria, it is not surprising that the outlines of
the oscillatory region in Figure 3.d resemble the region in Figure 2.a. Even for this very high
ratio of mRNA to protein rates, however, quantitative differences in the oscillation amplitude
profile remain, in contrast to the case Rp = 2000.

We want to emphasize that in the case of Rm = 10, which represents a biologically
reasonable assumption that the mRNA turnover is 10 times faster than that of proteins,
there are significant changes in the global dynamics of system (15) compared to system (13).
The argument that the faster turnover of mRNA validates modeling only protein dynamics
is not justified in this case. In the limit of extremely fast mRNA processes, the mRNA and
protein only models are still not equivalent, but might be argued to be sufficiently similar to
justify the approximation. Biologically realistic separation of protein and mRNA timescales
is not nearly sufficient to approach this limit for system (14).

13



(a) (b)

(c) (d)

Figure 3: Amplitude of stable oscillations as a function of the parameters. The warmer colors
correspond to larger oscillations. The color scale is the same in all figures: the same color
corresponds to the same amplitude. (a) system (15) with Rp = 2000 recapitulates dynamics
of the model (13) of Yang et. al. [25]; (b) system (15) with Rp = Rm = 1 shows significant
differences in oscillation stability and amplitude (c) system (15) with biologically plausible
ratio of mRNA to protein turnover rate Rm = 10 shows significant differences in dynamics
compared to (a) as well; (d) system (15) with very fast mRNA turnover Rm = 2000 shows a
similar region of stable oscillation to (a), but retains differences in oscillation amplitude, in
spite of the fact that the linear approximations at equilibria are similar to those of (13).

We conclude that model selection can significantly change both qualitative and quantita-
tive behavior of gene network models and different, reasonable, choices of models can result
in substantially different predictions of behavior. Additionally, in this system we find that
even if the timescale of mRNA processes is ten times faster than that of protein processes,
including mRNA in the model still changes the model’s dynamics, both qualitatively and
quantitatively.
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4 Discussion

As the use of mathematical models of gene regulation becomes more common, the question of
reliability of model predictions is becoming more central. Since many modeling approaches
can be realistically used in any situation, the question of how model prediction depends on
this choice needs to be addressed.

In this work we analyze one such choice. The structure of the gene networks we con-
sider can be represented in the form of a directed signed graph, where connections represent
either up-or down-regulation of the gene corresponding to the target node by the gene corre-
sponding to the source node. This specification leaves many modeling choices still open. In
particular, it does not specify if for each gene both protein and mRNA abundances should
be modeled, or if only protein abundances would suffice. Both of these model types are
routinely used. Leaving aside a (very interesting) question of correspondence between dy-
namics of a deterministic or a stochastic model, we compare dynamics of two ODE systems,
which are both constrained by the same gene network interaction graph with n nodes. The
n-dimensional system that uses one variable per vertex of the graph represents a choice of
modeling protein abundances, while a 2n-dimensional system which uses two variables per
vertex represents a choice to model both mRNA and protein abundances.

We compare the dynamics of these models in three different settings. First we show that,
in cyclic feedback systems, the addition of mRNA can only destabilize an equilibrium. Cyclic
feedback systems are a class of systems that often arise in models of biochemical oscillations
([9, 3])

We then generalize our analysis to equilibria of a more general protein network. We
assume a single decay rate for all proteins, a single decay rate for all mRNAs, and a single
rate of protein production, but allow the nonlinear functions that specify production of
mRNA, based on promoter dynamics to be arbitrary. We find that there is always a subset
of complex numbers with negative real part, such that if an eigenvalue of a protein-only
network lies in this area, a corresponding eigenvalue of the model, that also includes mRNA,
has positive real part. This shows that the inclusion of the mRNA may, in general, destabilize
an equilibrium. In some special circumstances, inclusion of mRNA may also stabilize the
equilibrium, but these cases are not biologically plausible.

Finally, we numerically analyze the global dynamics of a recent gene regulation model by
Yang et.al. [25], which has been used to investigate correspondence between a cyclic feedback
oscillator (the repressilator) and a relaxation type oscillator. Yang’s model considers only
concentrations of proteins and a signaling molecule. We compare it to an equivalent model
that includes mRNA concentrations as well. We show that the bifurcation diagram for the
protein only network is qualitatively different from the bifurcation diagram for for the model
including mRNA, and the amplitude profile of oscillations is quantitatively different.

We conclude that, in general, the addition of mRNA concentrations as separate state
variables can result in qualitative changes to the dynamics of gene network models. In
the specific case of the model from [25], we find significantly altered behavior with the
explicit modeling of mRNA. A common argument for simplifying gene regulation models by
not explicitly tracking mRNA is that mRNA dynamics are often much faster than protein
dynamics. We find that, although in the limit of a very large separation of timescales between
the protein and mRNA processes, this is a valid argument, for biologically probable values
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of this separation, significant differences remain. Effective models of biological processes will
need to include some simplification, given the very large number of possible components to
track in a real biological system. We find, however, that a reasonable choice of simplification
can result in a model with different behaviors. We thus suggest that caution will be needed
when choosing how a model should be simplified.

Our work is only a first step in what we hope will be an important line of research
that aims to rigorously compare dynamics of different models, all of which are compatible
with a given structural constraint. In our case the structural constraint is the signed graph
of interaction between genes or, more generally, species. An obvious next steps would be
to include the effect of a transcriptional and translational delay into an ODE model and
investigate the dynamics of an ODE model and an ODE model with delays, or compare
stochastic and deterministic dynamics with the same structure. While partial results exist
in both of these areas, a number of questions remain open.

5 Appendix

5.1 Proof of Theorem 3.3

We start by comparing the roots of the characteristic polynomial of (9)

det(A−D − λI) =: Πn
i=1(λ− zi) (17)

with the characteristic polynomial of (11)

det Q := det

[
−D − λI C

A −B − λI

]
. (18)

If we multiply the n+l column of Q by dl+λ
cl

and add it to the lth column of Q for l = 1, . . . , n

then the determinant in (18) does not change and we get

det Q = det

[
0 C

A− (B + λI)C−1(D + λI) −B − λI

]
. (19)

Now we multiply the l row of the above matrix by bl+λ
cl

and add it to the n + lth row for
l = 1, . . . , n. After this operation

det Q = det

[
0 C

A− (B + λI)C−1(D + λI) 0

]
.

By exchanging the first n and second n rows we finally get

det Q = (−1)n
2

det

[
A− (B + λI)C−1(D + λI) 0

0 C

]
= (−1)n

2

det C det (A− (B + λI)C−1(D + λI)). (20)

Up to this point our argument is general and allows arbitrary diagonal matrices B,C
and D. To make further progress we assume that each of the diagonal matrices is constant.
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That is, we assume D = dI,B = bI and C = cI, where I is the identity matrix. We denote
the eigenvalues of matrix A by µ1, . . . , µn. Then the eigenvalues z1, . . . , zn of the smaller
problem (17) are related to the µi by

µi = zi + d

zi = µi − d.

It follows from the equation (20) that the eigenvalues of Q satisfy det(A − uI) = 0 where
the constant

u =
db+ (d+ b)λ+ λ2

c
.

Therefore the eigenvalues come in pairs λ±i , where for each i they are related to eigenvalues
µ1, . . . , µn of A by

µi =
db+ (d+ b)λi + λ2

i

c
or

λ2
i + λi(d+ b) + db− µic = 0.

The solutions are

λ±i =
1

2
(−(d+ b)±

√
(d− b)2 + 4µic).

We note that the sets U and V described in the Theorem 3.3, can be obtained from the
following two sets:

a. W1 := {µ ∈ C | the real part of z = µ− d is negative},

b. W2 := {µ ∈ C| the real part of at least one of λ± = 1
2
(−(d+b)+

√
(d− b)2 + 4µc) is positive. }

Let W := W1 ∩W2 and Z := Int (W̄1 ∩ W̄2), where the bar denotes the complement of
a set in the complex plane, and Int is the interior of a set. It follows that the set Z is the
set of those µ where the real part of z = µ− d is positive and the real parts of both λ± are
negative. With these definitions the sets

U = W − d, and V = Z − d

are translations of the sets W and Z respectively.
The set W1 has a very simple shape - it is a half-plane in a complex plane of the form

<e(µ) < d. We now investigate the set W2. We first observe that

<e(1

2
(−(d+ b)±

√
(d− b)2 + 4µc)) > 0

is equivalent to
d+ b < ±<e(

√
(d− b)2 + 4µc). (21)

We write
µ := reiφ (22)
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and set
ueiθ := (d− b)2 + 4cµ = (d− b)2 + 4creiφ. (23)

Then the square root on the right hand side (21) has two solutions

w1 =
√
ueiθ/2 and w2 =

√
uei(θ/2+π).

Taking the real part on the right hand side of the equation (21) we see that the inequality
is equivalent to

d+ b <
√
u cos θ/2 or d+ b <

√
u cos(θ/2 + π). (24)

If we define the angle θ in (23) to be −π ≤ θ ≤ π, then for θ/2 we have −π/2 ≤ θ/2 ≤ π/2.
This implies that cos θ/2 > 0 and cos(θ/2+π) < 0 and the second inequality in (24) is never
satisfied.

Therefore the region Y is bounded by the curve

√
u >

b+ d

cos(θ/2)
, where − π

2
≤ θ/2 ≤ π

2
. (25)

We now express this inequality in terms of u and θ, rather than
√
u and θ/2. Since cos θ/2 ≥ 0

in the range of possible θ/2, the inequality (25) is equivalent to cos2(θ/2) > (b+d)2

u
. We

multiply by 2, subtract 1 from both sides and use the double angle formula to get

cos θ > 2
(b+ d)2

u
− 1,

which yields

u > 2
(b+ d)2

1 + cos θ
, −π < θ < π (26)

This formula has a clear geometric interpretation. As angle θ sweeps the range from −π to
π, the critical modulus

u∗(θ) := 2
(b+ d)2

1 + cos θ

varies from (b+ d)2 at θ = 0 (the positive real axis) to ∞ in the limit θ → ±π (the negative
real axis). The function u∗(θ) in polar coordinates has apex at (0, (b+d)2) and is symmetric
around the real axis since u∗(θ) = u∗(−θ). The region Y = {ueiθ ∈ C | u > u∗(θ)} is the set
of all complex numbers whose modulus is larger than u∗(θ).

From definition (23) we see that the set W2 is a shifted and scaled version of the set Y .
Indeed, the affine transformation X := Y − (d− b)2 shifts the region Y to the left, but does
not change the shape of Y . The coordinate of the apex of X on positive real axis will be

(b+ d)2 − (d− b)2 = 4bd > 0.

Finally, a complex number Reiφ ∈ X if, and only if, 4creiφ ∈ W2. This means that r = R
4c

and the set W2 can be obtained from the set X by dividing the radius along each ray by 4c.
The intersection of the set W2 with the positive real axis is then

{µ | µ > bd

c
}. (27)
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Now we turn to the sets W = W1 ∩W2 and Z = Int (W̄1 ∩ W̄2), where Int denotes the
interior of a set. Since W1 is given by µ < d we see from (27) that if b ≥ c, the intersection of
W with the real axis is empty, while if b < c this intersection is an interval ( b

c
d, d). The set

W is an unbounded subset of the set W1 (see Figure 1). The set U is just a translation of the
set W ; if b ≥ c then U does not intersect the real axis, while if b < c, then this intersection
is an open interval (( b

c
− 1)d, 0).

The interior of the intersection W̄1 ∩ W̄2 = ∅ when b ≤ c, while when b > c it is a
bounded set around the positive real axis, intersecting this axis in the interval (d, b

c
d). The

set V is just a translation of this intersection and intersects the positive real axis in the
interval (0, ( b

c
− 1)d).

5.2 Computer simulations

Numerical analysis was performed with custom software written in Python and C, us-
ing AUTO (http://indy.cs.concordia.ca/auto/) for dynamical continuation, and the
CVODE module of Sundials (https://computation.llnl.gov/casc/sundials/main.html)
for evaluation of particular time-series solutions. Source code is publicly available at https:
//github.com/gic888/msu_rna_dynamics), and is licensed under the GNU Public license
(http://www.gnu.org/copyleft/gpl.html). Separate, but equivalent, specifications of
both models (with and without explicit RNA) were implemented in C for use by Sundi-
als, and FORTRAN for use by AUTO. Evaluation protocols and visualizations were written
in Python.

We report results from two sorts of numerical investigations. The boundaries of the region
of stable oscillations, in both of Figures 2 and 3, were computed by AUTO. The amplitudes of
oscillation, as encoded by the colors in Figure 3 were computed from time-series evaluations
of the system.

To compute the oscillation amplitude values, we sampled the reported range of the pa-
rameters α2 and ε with a 100 by 100 grid of parameter values. For each point in this grid,
we numerically integrated the model, using CVODE’s BDF/Newton integrator, for 600 time
units. We then discarded the first half of this time window, to remove the initial transients,
and measured the peak-to-peak amplitude of the remaining time-series.

During the scans reported here, we used only a single initial condition (all state variables
equal to 2). As a result, it is not surprising that in the interior of the fold, we sometimes
do not detect oscillations even where a stable oscillatory state should exist according to the
dynamics. It appears that, as α2 increases and ε decreases, the oscillatory state becomes
less and less numerically accessible. In additional scans using many sets of initial conditions,
distributed in the vicinity of previously located oscillations, we were able to detect oscil-
lations in more, but still not all, of this region. These explorations were computationally
expensive, prone to numerical errors, and did not affect our conclusions about the overall
system dynamics, and are therefore not reported here.
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