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Abstract

A powerful approach to studying how information is transmitted in basic neural systems

is based on finding stimulus-response classes that optimize the mutual information shared

between the classes [2,6]. The problem can be formally described in terms of finding a

optimal quantization ����� of a large discrete joint ���� � distribution and various al-

gorithms have been developed for this purpose. Recently it has been proved that finding

the optimal such quantization is NP-complete [3], indicating that exact solutions may be

computationally infeasible to find in some circumstances. We have developed a new ran-

domized algorithm to solve the joint quantization problem. Under assumptions about the

underlying ���� � distribution, we prove that this algorithm converges to the “true” optimal

quantization with high probability that can be increased by performing additional random
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trials.
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1 Introduction

How is information represented and transmitted in simple neural systems? Our

work on this central question in neuroscience has focused on studying a sensory

system in crickets, although the techniques described are generally applicable to

any situation where recordings of neural activity can be correlated with an input

stimulus. This work primarily addresses a new method for processing such large

neural activity trace data sets (consisting of a time series of input stimulus and out-

put spike events across one or more axons). Existing techniques work well for the

case of a single dimensional spike train recording but such methods may not scale

well to high dimensional recordings made on multiple neural signals. We present

a new approach to overcome the “curse of dimensionality” using a method of ran-

dom projections to find subtle relations between input stimuli and output pattens

potentially encoded over several neural channels.

We formulate the neural coding problem in terms of quantizing a joint ��� � � space

where � represents the input stimuli set and � is the set of possible neural activ-

ity patterns. Both of these spaces are high dimensional, especially so if multiple

signal channels are recorded simultaneously with the potential for coding to be

multiplexed across the channels. Since noise is omnipresent in neural processing,

sensory systems must be robust. As such, they must represent similar stimuli in a
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similar way and then react to similar internal representations of the outside stimuli

in a consistent way. This leads to a conclusion that individual input and output pat-

terns are not important for understanding neural function, but rather classes of input

stimuli and classes of output patterns and their correspondence is the key. There-

fore we are led to a problem of optimal assignment of input and output patterns to

classes, where the optimality is judged on how much original mutual information

is still present between the collection of classes.

2 Background

Given two discrete random variables � and � the mutual information ���� � � is

defined by

���� � � �
�
���

����� �� ��
����� ��

����� �����
�

The mutual information is always nonnegative and achieves its minimal value � if

the random variables� and � are independent. The value ���� � � tells us, roughly,

how much we can learn � by observing � , and vice versa. For the application to

neural coding both� and � are very high-dimensional spaces, so we are motivated

to find a joint quantization of the underlying distribution into reproduction spaces

� � ���� � � � � ��� and 	 � �
�� � � � � 
�� and a joint quantization using two sets

of quantizers, ������� and ��
����. Quantizers are conditional probabilities and so

������� � ��, and ��
���� � ��, where �� � �� � ��
�

� �� � 	� �� � ��. We

would like to minimize that amount of distortion introduced by the quantizer (for

fixed � and �). Distortion is defined as

����	� � ���� � �� ����	��

where
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This is equivalent to the optimization problem


��

����������
�	� ������

����	�� (1)

A variety of methods have been developed to solve this optimization problem but

all have difficulty scaling to very high dimensional spaces as discussed in the next

section.

3 Quantizing Using Random Projections

The high dimensionality of� and � make it difficult to use traditional methods for

finding an optimal quantization of the joint space. With high probability, identical

points in either space are never repeated, even in large data sets. For example, if

we view the output space � as a collection of binary vectors (where a 1 indicates a

spike) of predetermined length �, with one vector for each of � channels, then the

size of � is ��. Hence, it is very unlikely that points in � are repeated in stochas-

tically generated data sets. Unless a metric of some sort is imposed beforehand on

� it is very difficult to say which points might be good candidates for grouping

together in the quantization. Another problem with a preimposed metric is that we

don’t know what features of� and � are most the important with respect to finding

the optimal quantization.
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At a high level, the method of random projections works by repeating the follow-

ing procedure: construct random projections of both spaces � � � � � � and

� � � � � � where �� and � � are much smaller spaces. The functions � and

� are referred to as random hash functions and are chosen at random from hash

function families � and � respectively (we discuss some initial choices of hash

function families in the experimental results section). Compute the mutual infor-

mation � of the data points as projected into �� �� � ��; this quantity is a measure

of how interesting the random projection is. By the Data Processing Theorem [1],

����� � �� � ���� � �. We say two data points ���� ��� and ���� ��� collide if they

hash to the same location, i.e. ����� � ����� and ����� � �����. This is some

evidence that this pair of data points should be quantized together and belong to

the same joint class in ���	�. Of course this could have just happened by chance,

so we need to repeat this process with many random projections. We can sum-

marize the results of all the projections efficiently in a weighted joint similarity

graph constructed on the joint data points. A vertex �� represents the �-th joint data

point ���� ���. If data points ���� ��� and ���� ��� collide and ���� �� is greater than

a prespecified cut-off �� , then we add 	 to the weight of the edge between �� and

�� (inserting the edge first if didn’t previously exist). Currently we chose �� so

that the best 10% of all hash functions are kept, although this parameter can obvi-

ously be tuned. If a sufficient number of hash functions are employed, the resulting

joint similarity graph can be used to find the natural clusters in joint clusters in the

��� � � distribution and in so doing construct effective quantizers. If an edge weight

����� ��� is relatively high, this provides evidence that the underlying data points

���� ��� and ���� ��� should belong to the same class in the joint quantization. We

can computationally determine the quantized classes by partitioning the vertices in

the graph into a set of clusters. These clusters will represent the joint classes. We

expect the intra-cluster edge weights to be much higher on average than the the
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inter-cluster edge weights and use this fact to discover the clusters. A number of

potential graph algorithms could be employed at this point to find the clusters. We

currently use an existing clustering software package, CLICK [4], to find clusters

in the joint similarity graph.

3.1 Choosing random projections

The hash function families � and � are constructed differently as the underlying

spaces � and � are different. In the case of cricket sensory data sets, the input

space � consists of waveform of length Æ milliseconds (e.g. Æ � ��). The output

space � represents the spike train recording (typically one or more binary vectors

depending on the number of channels recorded).

For hashing the input space, we construct � � � as follows: First, chose � stimulus

waveforms to be “centers”. Then, map each waveform � to its nearest (�� met-

ric) center �	� � � � � ��. The output space � consists of binary vectors representing

the spike occurrence pattern � recorded over a fixed time after the occurrence of

each stimulus waveform �. A simple random hash function family � is based on

counting the number of spikes in � and mapping this to a smaller set of integers

� � � �	� � � � � ��. The mapping is constructed by creating a random �-partition

of the set �	� � � � � ��, where � was the maximum observed spike count in � . The

spike count of each � is determined and � is mapped to the partition number that its

spike count falls into. We view � and � as test cases and are further refining both

families.
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3.2 Bounding the number of trials needed

We have some preliminary theoretical results on the number of random trails neces-

sary to successfully recover the correct joint quantization. We make the assumption

that the underlying joint space ��� � � is clustered into � clusters ��� � � � � �� and

that each cluster �� is sampled with probability �� � �,
�

� �� � 	. The random

projection method is sensitive to the ability of the hash functions used. To date,

we have just analyzed the method under the the assumption of a good projection

family. Let ��� �� � �� and ���� ��� � �� . We say ����� is good if there exists

constants 	 � � � � � � such that for all 	 � �� � � �:

� � �������� �� and ���� ��� collide� � �
� 	� �������� �� and ���� ��� collide� � �

We assume collision probabilities are independent between all pairs of non-identical

points in the joint space.

Lemma 1 If � � � � ��	���, we can recover the true joint clusters with high

probability with  ��� random projections.

PROOF. We observe that intracluster and intercluster edge counts in the joint sim-

ilarity graph are binomially distributed with parameters � and � respectively. Sup-

pose � random hashes are performed on the joint space. We use following rule

decide if an edge in the joint similarity graph is an intracluster edge: if the edge

count is greater than or equal to a threshold ! , we keep the edge, otherwise we

discard it. Let " be the probability that a true intracluster edge is kept and let  be

the probability that a false intercluster edge is kept. It can be verified that "� is
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maximized when

! �

�
	 �

��� � � ��� �

����	� ��� ����	� ��

���


�

and that if � �  ��� then " �  � ��	�. At this point, recent random graph

clustering results [5] can be applied to find the clusters with high probability. We

have omitted full details due to space constraints.

4 Experimental Results

In this section we describe our initial results with the random projection method for

finding neural codewords. We have tested a simple Matlab implementation of the

method on several data sets. We report on a test data set of cricket sensory neural

trace data collected by the Center of Computational Biology and Montana State

University. In the experiment, a “white noise” air current stimulus was applied to

the cricket. A single neural channel was recorded. Each time an onset spike (no

activity for several hundred milliseconds previously) occured an input-output pair

was generated as follows: The input � was formed by taking a (-30ms, +25ms)

window of the input stimulus wave form, where 0 indicates the time of the onset

spike. The corresponding output � recorded the spike occurences in the (0,+25ms)

window (encoded as a binary vector). We have found strong evidence for four joint

clusters in the ��� � � space for this data set, as shown in Figure 1.

5 Conclusions and Future Work

Neural code determination is an important problem in neurobiology. Analysis meth-

ods must be able to scale with larger data sets, both in the time dimension and the
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Fig. 1. The joint similarity matrix for cricket sensory neural data set. This matrix shows

the similarity between each pair of data points as determined by the edge weights in the

joint similarity graph. Similarity strength is indicated using a gray scale (dark = high simi-

larity). The data points have been permuted into the four clusters found by the randomized

projection algorithm. The clusters agree closely with previous quantizations found on the

same data set. The mutual information between the quantized classes was 1.4921 bits.

spatial dimension of how many neural signals are simultaneously recorded. The

random projection method is a promising new technique for studying neural cod-

ing through optimal mutual information joint quantization.

We are investigating both theoretical and practical improvements to the method. In

particular the choice of random hash function families can likely be refined. The

functions we used for the spike vectors above are basic; one can imagine more

complicated projections based on the number of doublets, triplets, etc. or other

patterns spanning multiple channels. At the moment, we propose weighting edges

in the joint similarity graph by counting the number of “interesting” hash functions

for which their endpoints collide. It is possible that other edge weighting functions

may be more informative (e.g. just adding ���� �� to the weight of the edge instead
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of using a cut-off threshold). Another interesting direction is to use a traditional

quantization algorithm on the �� �� � �� space after each random hash application.

This would have the effect of mapping the points to an even smaller joint space

(points of which represent the joint classes found) and perhaps add more useful

edges to the joint similarity graph at the cost of increased computational effort per

iteration.
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