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Abstract

There have been various suggestions about how information is encoded in neural spike
trains: by the number of spikes, by the temporal correlations, or by complete patterns. The
latter scheme is most general, and encompasses many others. However, the search for pattern
codes requires exponentially more data than the search for mean rate or correlation codes. Here
we describe a method that enables optimal use of whatever quantity of data is available. This
method allows spike trains to be studied with variable, non-uniform temporal precision.
Precision is optimized to provide a best lower bound for the information content of spike
patterns given the available data. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A quantitative analysis of neural decoding involves parsing a string of spikes from
one or several neurons, determining the relevant codewords and assigning corre-
sponding sensory stimuli to the di!erent spike patterns. Tools in Information Theory
[1,7] allow us to characterize the quantity of information carried by a particular
coding scheme, by estimating its entropyH and the mutual information I between the
neural code and the input stimulus [2,6]. The knowledge of H and I places important
bounds on the performance of any encoding scheme. Estimating these quantities from
data is not a trivial task [2,4,9].
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We present an approach to reduce the uncertainties in assessing the viability of
a particular coding scheme due to limitations in the amount of available data. The
approach quantizes spike patterns using a similarity measure which is intrinsic to the
processed signal and the task at hand. This method allows spike trains to be studied
with variable, non-uniform temporal precision. The coarsest representation is equiva-
lent to a spike count code, while the most "nely grained one corresponds to a precise
spike timing code. The transition between representations is governed by a single
parameter. When quantizing just the spike data, an appropriate measure is the
entropy of spike patterns, which puts an upper bound on the amount of information
that can be encoded with such a signal. If the spike patterns are related to a driving
stimulus, a more appropriate measure to be maximized is the mutual information
between stimulus and neural response. We show how these measures can be used to
provide optimal use of all available data.

2. Quantization of spike patterns

In Information Theory, the entropy H and mutual information I have very speci"c
meaning [7]. There are about 2����� distinct messages that can be transmitted with
sequences of length n from a random source X. These are the typical sequences of X.
For a pair of sources (X,>), there are about 2������� jointly typical sequence pairs. Due
to noise or mismatch in the signal dimensionality, this mapping is not one to one. The
number of clusters in (X�,>�) that can be reliably communicated is about 2�������. Thus
the knowledge ofH and I places important bounds on the performance of any coding
scheme. Estimating these quantities requires enormous amounts of data, which grow
exponentially with the complexity of the coding scheme [4].

2.1. Quantization theory

The usual de"nitions of H and I are H(X)"E
����

log[1/p(x)] and I(X,>)"
E
������

log[p(x,y)/p(x)p(y)]. Alternative de"nitions allow us to control the exponential
growth of required data and obtain tighter estimates on lower bounds of these
quantities. This is done through the use of quantizers [3]. A quantizer is any simple
measurable function f :XPX
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For any X and any quantizer f, I(>;X)*I(>;X
	
). If X is itself a discrete space,

H(X)*H(X
	
), that is, estimates in the quantized spaces are always lower bounds of

the actual information quantities. When X is continuous, H(X) diverges with re"ne-
ments. I(>;X) on the other hand can always be obtained as the least upper bound over
all re"nements.
The statements above suggest that quantizations could provide lower bound

estimates of H and I of a neural spike sequence with controlled precision, since now
the size of the pattern set is "xed by the size of the reproduction and could be
potentially much lower than the size of the original patterns space.

2.2. Quantization functions for spike patterns

One particular quantization of spike trains changes a string of spikes to a shorter
string of integers. The choice of speci"c quantizers is not critical to the estimation
procedure since it can always be re"ned. For physiological recordings, there is always
the ultimate re"nement imposed by the temporal resolution of the instruments. Thus,
the only condition that we impose on the quantizers is that at the "nest resolution
they recover the original spike pattern.
Let us "rst consider the single neuron case. One way to represent a neural activity

pattern is as a string of ones and zeros of certain length. One possible quantization is
to subdivide this string in a "xed number of consecutive substrings and to each assign
an `activitya number. We currently assign the number of spikes in a substring as its
activity, but other quantizations are possible. An example can be seen in Fig. 1. The
quantization here is "ne enough so that the resultant patterns are still binary, but
much reduced in complexity (B). The coarsest representation consists of only a single
substring, and the quantization function represents each pattern with the number of
spikes contained in it.
A longer quantized string is a re"nement of a shorter quantized string and can

potentially provide a better estimate of the information quantities. On the other hand,
a "ner representation requires more data to support its estimates. We will look for an
optimal re"nement, which provides the best lower bound on information quantities
given the available data. Given a "xed string size, we can look for the quantization
(i.e., the con"guration of substrings) that gives us the largest estimate of H or I. Such
quantization will provide the greatest lower bound for this string length. Thus
patterns in the quantization space have as much as possible of the information-
carrying capacity of the raw spike train (if maximizing H), or retain as much as
possible of the information about the stimulus (if maximizing I). The quantized
patterns can serve as basis for extracting further details about the coding scheme used,
to the extent that these are supported by the amount of data.
Multiple neurons can be handled in a very similar manner. The quantization

function in this case "rst groups the neurons in clusters. Inside the cluster, neurons are
considered indistinguishable, thus a member spike is a cluster spike. The output of
a cluster is again a binary string of spikes, which is then quantized with the single unit
quantization function.
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Fig. 1. A raster-plot of raw spike patterns with a particular quantization patterns superimposed on them
(A) and the corresponding quantized patterns (B).

3. Results

First, we present an example of the optimization landscape for a "xed string length.
For visualization purposes we chose the case with three substrings, which is deter-
mined by two free parameters (envision Fig. 1 with only 2 bars in it, which de"ne three
boxes). The form of the cost functions, which we maximize, can be seen in Fig. 2. In
part (A) we show the entropy estimate as a function of di!erent partitions. The "gure
is symmetric with respect to exchange of ¹

�
and ¹

�
. What it conveys is that di!erent

con"gurations a!ect the estimate ofH. Some produce rather low estimates (e.g., all the
con"gurations with ¹



3[0,10] ms). The case where all patterns are represented only

by the number of spikes is at ¹"(0,0) and has the lowest entropy value here, hence
the lowest information-carrying capacity. The coarser one-parametric representation
can be observed on the diagonal ¹

�
"¹

�
or on the sides ¹

�
"0 or ¹

�
"0. Several

things are notable about this "gure: (a) The cost function is a relatively smooth
function of con"gurations. One can use an arbitrary optimization routine to "nd the
optimum. Nevertheless it is not unimodal, so a mild stochastic correction to the
optimization routine is necessary to "nd the global maximum. (b) Re"nement matters.
The optimal H estimate is more than twice larger than the spike counting case and
about 1.5 times larger than the optimal 1d case at ¹"[0,24] ms. (c) Con"gurations
also matter. It is crucial to note that the entropy estimate is also about 1.5 larger than
the uniform 2d con"guration¹

�
"16 ms, ¹

�
"32 ms, which is the one typically used

when discussing spike timing codes (usually at "ner quantization of �¹+1 ms). This
suggests that a non-uniform quantization like the one performed here can provide
a patterns representation which retains more of the information carrying capacity of
a spike train than a uniform quantization.
Similar results can be observed when I is the quantity of interest. This is a much

more interesting case, since now we are maximizing the information carried by the
quantization about an external stimulus. The cost function show much greater
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Fig. 2. The optimization landscape for two boundaries for an entropy (A) and mutual information (B) cost
functions.

Fig. 3. Optimal con"gurations for the entropy (A) and mutual information (B) estimates in the 10
substrings (9 parameters) case. H

���
"(2.93$0.03) bits, I

���
"(1.4$0.11) bits.

irregularity than in the former case, thus it's maximization is now a non-trivial matter.
We are still developing algorithms to improve on the Monte-Carlo method we
currently use for this task. Yet all the points made for the entropy case are also valid
here. The re"nement improves tremendously the mutual information estimates (more
than ten times!). The optimal con"guration improves the estimate of the uniform
con"guration by about 60%. All the "gures here are highly signi"cant, since the
bootstrap estimate of the standard deviation for these quantities was under 0.01 bits
for the entropy case (A) and about 0.05 bits for the mutual information case.
We also present the results of applying this method at a "ner quantization (Fig. 3).

When maximizing the quantized entropy (A), the algorithm produces a relatively
uniform con"guration. The distribution of spikes in each bin is even more uniform
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(not shown). It seems that the method is trying to approximate a uniform distribution
of spikes across the bins, which is the maximum entropy distribution in this case. The
results are radically di!erent for the quantized mutual information case. It seems that
the method is describing certain regions of the spike patterns rather precisely (e.g., the
region between 4 and 5 ms, where spikes are tracked with sub-millisecond precision),
while quantizing rather coarsely other regions ([1,4] ms). From previous work [2] we
were aware that this sensory system contains units which carry information through
temporal spike precision of under 100 �s. This was the "rst indication that the
temporal structure of some regions within a spike patterns could be much more
important than in others.

4. Discussion

In this work we present a novel method for transforming neural spike trains in
a manner that greatly increases con"dence in our assessment of their neural coding
scheme. We achieve this by quantizing the neural spike patterns while preserving as
much as possible of their information measures, H or I. The neural spike train is
quantized to a reproduction space of "nite size. For a "xed size reproduction, the
maximum entropy/information con"guration is chosen to represent the spike patterns.
The information quantization method uses intrinsic similarity measures. In this

way it avoids problems with biases induced by the interaction of an arbitrary distance
measure with the coding scheme and preserves most of the informativeness of the
original spike sequence. It can easily be used with other method for estimating
information quantities [5,8] to improve their estimates.

References

[1] T. Cover, J. Thomas, Elements of Information Theory, Wiley Series in Communication, New York,
1991.

[2] A.G. Dimitrov, J.P. Miller, Natural time scales for neural encoding, Neurocomputing 32}33 (2000)
1027}1034.

[3] R.M. Gray, Entropy and Information Theory, Springer, Berlin, 1990.
[4] D.H. Johnson, C.M. Gruner, K. Baggerly, C. Seshagiri, Information-theoretic analysis of the neural

code, J. Comput. Neurosci. (2001), in press.
[5] S. Panzeri, S.R. Schultz, A. Treves, E.T. Rolls, Correlations and the encoding of information in the

nervous system, Proc. Roy. Soc. London B 266 (1999) 1001}1012.
[6] F. Rieke, D. Warland, R.R. de Ruyter van Steveninck, W. Bialek, Spikes: Exploring the Neural Code,

The MIT Press, Cambridge, MA, 1997.
[7] C.E. Shannon, A mathematical theory of communication, Bell Sys. Technol. J. 27 (1948) 623}656.
[8] S.P. Strong, R. Koberle, R.R. de Ruyter van Steveninck, W. Bialek, Entropy and information in neural

spike trains, Phys. Rev. Lett. 80 (1) (1998) 197}200.
[9] A. Treves, S. Panzeri, The upward bias in measures of information derived from limited data samples,

Neural Comput. 7 (1995) 399}407.

Alexander Dimitrov is a postdoctoral research fellow at the Center for Computational Biology at Montana
State University in Bozeman, Montana. He majored in Physics at St. Kliment Ohridski University of So"a,

180 A. G. Dimitrov et al. / Neurocomputing 38}40 (2001) 175}181



Bulgaria. He proceeded with his graduate studies at the University of Chicago, where he received his M.Sc.
in Physics in 1993 and Ph.D. in Applied Mathematics in 1998, under the guidance of Dr. Jack D. Cowan.
He is currently a postdoctoral fellow of Dr. John Miller under a personal training grant from the NIH. His
main interests are in computational neuroscience and problems of neural coding.

John P. Miller is Professor of Biology, and the Director of the Center for Computational Biology at
Montana State University, in Bozeman. He received his B.A. in Physics at the University of California,
Berkeley, in 1972, and his Ph.D. in Biology at the University of California, San Diego, 1980. He did
postdoctoral research at NIH in Bethesda, MD., with Dr. Wilfrid Rall and Dr. John Rinzel. Dr. Miller was
a faculty member at U.C. Berkeley until 1997, when hemoved to become the founding director of the Center
for Computational Biology at MSU. His research interests include neural encoding, mechanisms of
synaptic integration and system-level function. He was one of the six founding editors of the Journal of
Computational Neuroscience. Along with Jim Bower of Cal Tech, Dr. Miller also established and
co-organized the annual Computational Neuroscience (CNS) Meetings from 1992 until 1997. He currently
serves as a member of the President's Information Technology Advisory Committee (PITAC).

Zane Aldworth is a graduate student of Dr. John Miller in the Center for Computational Biology at
Montana State University, Bozeman, Montana. Zane has a B.S. in Physics from the University of Puget
Sound in Tacoma,WA, and a B.S. in Biology fromMSU, Bozeman. He is pursuing graduate studies as part
of the NSF-sponsored IGERT program in Complex Biological Systems, with an emphasis in the neural
basis of information processing.

Tomas Gedeon is an Associate Professor of Mathematics at Montana State University, Bozeman. He
received his B.A. in Mathematics at Comenius University in Bratislava, Slovakia in 1989. He proceeded
with his graduate studies at Georgia Institute of Technology, where he received his Ph.D. in Mathematics in
1994 under the guidance of Dr. Konstantin Mischaikow. He was a Visiting Professor at the Department of
Mathematics at Northwestern University until 1995, when he moved to his current position at Montana
State University. His interests include computational neuroscience, dynamical systems and neural coding.

A. G. Dimitrov et al. / Neurocomputing 38}40 (2001) 175}181 181


