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Abstract: A formal approach for deciphering the information contained within nerve cell 
ensemble activity patterns is presented. Approximations of each nerve cell's coding 
scheme is derived by quantizing its neural responses into a small reproduction set, and 
minimizing an information-based distortion function. During an experiment, the sensory 
stimulus world presented to the animal is modified to contain a richer set of relevant 
features, as those features are discovered. A dictionary of equivalence classes is derived, 
in which classes of stimulus features correspond to classes of spike-pattern code words. 
We have tested the approach on a simple insect sensory system.  Copyright © 2003 IFAC 
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1. THE NEURAL ENCODING PROBLEM 
 

Two major goals facing neuroscientists are to 
understand how information is encoded in the activity 
patterns of neural ensembles and to understand how 
those activity patterns are decoded by cells at the 
subsequent processing stages. A formal, general 
approach toward achieving those goals has been 
presented in previous work (Dimitrov et al., in press). 
A significant extension of the technique is presented 
here, along with a demonstration of the application of 
that approach to the analysis of neural coding in an 
insect sensory system. This approach is being refined 
through the development of a data-driven model of 
that sensory system. 
 
 
1.1 A Dictionary for the neural code. 
 
Tools from information theory were used recently to 
characterize the neural coding scheme of a simple 
sensory system (Dimitrov and Miller, 2001). That 
work demonstrated that a coding scheme can be 
conceptualised as an almost-deterministic relation 
between clusters of stimulus-response classes, where 
each class consists of a set of stimuli and a 

synonymous set of the neural responses elicited by 
those stimuli. Each “entry” in the dictionary consists 
of one of these stimulus-responses classes: i.e., all of 
the stimuli in the stimulus class are treated as being 
equivalent (e.g., repeated but slightly variant strums 
of a guitar chord) and all neural responses in the class 
are also considered to be equivalent (e.g., repeated 
but slightly variant hand-written notations for that 
chord). In the context of the sensory system used to 
illustrate that approach, the stimuli are short-duration 
(circa 20 msec.) segments of sensory input 
waveforms, and the neural responses are short-
duration patterns of action potentials (1-3 APs within 
20 ms windows following the stimuli). 
 
A method was developed to find high quality 
approximations of such a coding scheme (Dimitrov, 
et al., 2002). The technique involved the quantization 
of the neural responses to a small reproduction set, 
and used a minimization of an information-based 
distortion function to optimize the quantization. In 
cases involving complex, high-dimensional input 
stimuli, a model was derived for the stimulus-
response relation. Several classes of models were 
used to provide upper bounds to the information 

     



distortion function used in the optimization problem 
(Dimitrov, et al., in press). In general, a smaller value 
of the cost function indicated a better model. All 
models were variants of Gaussian Mixture Models 
(GMM) (Bishop, 1998). The differences pertained to 
the number of parameters used: richer models 
provided a better bound to the cost function, but 
needed more data for robust estimates. The 
applicability of the models were demonstrated by 
investigating coding properties of several identified 
neurons in the cricket cercal sensory system 
(Dimitrov, et al., in press; Dimitrov, et al., 2002). 
 
 
1.2 What stimulus features are encoded in neural 

activity patterns? 
 
A typical initiation point for system-identification 
studies of this nature involve the presentation of 
Gaussian white noise stimuli. Many earlier studies 
have used GWN stimuli for the characterization of 
neural coding characteristics. However, recent results 
in the cricket cercal sensory system indicate that 
sensory interneurons show sensitivity to higher-order 
statistical features that occur very infrequently in 
GWN stimuli (Roddey et al., 2000). Any 
characterization of the encoding scheme of a neural 
system that does not encompass the relevant stimulus 
regime would be essentially meaningless.  
 
Here, an approach is presented that enables discovery 
of the set of stimuli to which a cell or ensemble of 
cells is “tuned”, based on the assumption that those 
cells have become optimised over time to encode and 
transmit information about that natural stimulus set. 
This approach also enables a more consistent 
characterization of the stimulus/response properties of 
neurons to their natural, behaviourally-relevant 
stimulus regime. The techniques are introduced and 
demonstrated within the context of a simple test 
system: the cricket cercal sensory system. 
 
 

2. NEUROPHYSIOLOGICAL TESTBED 
PREPARATION 

 
The preparation used for these studies was the cercal 
sensory system of the cricket. This system mediates 
the detection and analysis of low velocity air currents 
in the cricket’s immediate environment. This sensory 
system is capable of detecting the direction and 
dynamic properties of air currents with great accuracy 
and precision (Gnatzy and Heusslein, 1986; Heinzel 
and Dambach, 1987; Kamper and Kleindienst, 1990; 
Miller et al., 1991; Shimozawa and Kanou, 1984a,b; 
Stout et al., 1983; Theunissen and Miller, 1991; 
Theunissen et al., 1996) and can be thought of as a 
near-field, low-frequency extension of the animal’s 
auditory system. 
 
Receptor organs. The receptor organs for this 
modality are two antenna-like appendages called cerci 
at the rear of the abdomen. Each cercus is covered 
with approximately 1000 filiform mechanosensory 
hairs, like bristles on a bottle brush. Each hair is 

constrained to move along a single axis in the 
horizontal plane. As a result of this mechanical 
constraint, an air current of sufficient strength will 
deflect each hair from its rest position by an amount 
that is proportional to the cosine of the angle between 
the air current direction and the hairs movement axis. 
The 1000 hairs on each cercus are arrayed with their 
movement axes in diverse orientations within the 
horizontal plane, insuring that the relative movements 
of the ensemble of hairs will depend on the direction 
of the air current. The filiform hairs also display 
differential sensitivity to aspects of the dynamics of 
air displacements, including the frequency, velocity, 
and acceleration of air currents [Osborne, 1997; 
Roddey and Jacobs, 1996). 
 
Sensory receptor neurons. Each hair is innervated by 
a single spike-generating mechanosensory receptor 
neuron. These receptors display directional and 
dynamical sensitivities that are derived directly from 
the mechanical properties of the hairs (Kamper and 
Kleindienst, 1990;  Landolfa and Jacobs, 1995; 
Landolfa and Miller, 1995; Roddey and Jacobs, 1996; 
Shimozawa and Kanou, 1984a,b). The set of 
approximately 2000 receptors innervating these 
filiform hairs have frequency sensitivities spanning 
the range from about 5 Hz up to about 1000 Hz. 
 
Primary sensory interneurons. The sensory afferents 
synapse with a group of approximately thirty local 
interneurons and approximately twenty identified 
projecting interneurons that send their axons to motor 
centers in the thorax and integrative centers in the 
brain. It is a subset of these projecting interneurons 
that we study here. Like the afferents, these 
interneurons are also sensitive to the direction and 
dynamics of air current stimuli (Miller et al., 1991; 
Theunissen and Miller, 1991; Theunissen et al., 
1996). Stimulus-evoked neural responses have been 
measured in several projecting and local interneurons, 
using several different classes of air current stimuli. 
Each of the interneurons studied so far has a unique 
set of directional and dynamic response 
characteristics. Previous studies have shown that 
these projecting interneurons encode a significant 
quantity of information about the direction and 
velocity of low frequency air current stimuli with a 
linear rate code (Clague et al., 1997; Theunissen and 
Miller, 1991; Theunissen et al., 1996). More recent 
studies demonstrate that there is also substantial 
amount of information in the spike trains that cannot 
be accounted for by a simple linear encoding scheme 
(Roddey et al., 2000). Evidence suggests the 
implementation of an ensemble temporal encoding 
scheme in this system. 
 
 

3. METHODS 

 
3.1 Experimental approach. 
 
Stimulus-response properties of sensory interneurons 
were measured using intracellular and extracellular 
electrodes. Stimuli consisted of controlled air currents 

     



directed across the animals’ bodies, and the responses 
consisted of the corresponding spike trains elicited by 
those air currents. The cricket preparations were 
mounted within a miniature wind tunnel, which 
generated laminar air currents having precisely 
controlled direction and velocity parameters. Details 
of the dissection, stimulus generation, and 
electrophysiological recording procedures are 
presented in Dimitrov et al. (2001). 
 
 
3.2 Derivation of the stimulus-response equivalence 

sets. 
 
Details of all analytical techniques, as well as 
discussions of our computational approaches, are 
presented in Dimitrov et al. (in press.)  A brief 
summary is as follows.  
 
A model of neural processing. The input signal X to a 
neuron (or neural ensemble) may be a sensory 
stimulus or may be the activity of another set of (pre-
synaptic) neurons. We considered the input signal to 
be produced by a source with a probability p(x). The 
output signal Y generated by that neuron (or neural 
ensemble) in response to Y will be a spike train (or 
ensemble of spike trains.) We consider the encoding 
of X into Y to be a map from one stochastic signal to 
the other. This stochastic map is the encoder q(y|x), 
which will model the operations of this neuronal 
layer. The output signal Y is induced by q(y|x) by 
p(y) = Σx q(y|x)p(x). 
 
This view of the neural code, which is probabilistic 
on a fine scale but deterministic on a large scale, 
emerges naturally in the context of Information 
Theory. The Noisy Channel Coding Theorem 
suggests that, in this context, relations between 
individual elements of the stimulus and response 
spaces are not the basic building elements of the 
system. Rather, the defining objects are relations 
between classes of stimulus-response pairs. There are 
about 2I(X;Y) such equivalence classes (i.e., codeword 
classes). When restricted to codeword classes, the 
stimulus-response relation is almost bijective. That is, 
with probability close to 1, elements of Y are assigned 
to elements of X in the same codeword class. This 
framework naturally deals with lack of bijectivity, by 
treating it as effective noise. We decode an output y 
as any of the inputs that belong to the same codeword 
class. Similarly, we consider the neural representation 
of an input x to be any of the outputs in the same 
codeword class. Stimuli from the same equivalence 
class are considered indistinguishable from each 
other, as are responses from within the same class. 
 
Finding the codebook. Given this model of neural 
function, our task is to recover the codebook. In this 
context, this equates to identifying the joint stimulus-
response classes that define the coding relation. The 
approach we use is to quantize (i.e., cluster) the 
response space Y to a small reproduction space of 
finitely many abstract classes, YN. This method allows 
us to study coarse (i.e., small N) but highly 

informative models of a coding scheme, and then to 
automatically refine them when more data becomes 
available. This refinement is done by simply 
increasing the size of the reproduction, N. 
 
The mutual information I(X;Y) tells us how many 
different states on the average can be distinguished in 
X by observing Y. If we quantize Y to YN (a 
reproduction with N elements), we can estimate 
I(X;YN), which is the mutual information between X 
and the reproduction YN. Our information-preserving 
criterion will then require that we choose a quantizer 
that preserves as much of the mutual information as 
possible, i.e., to choose the quantizer q(YN|Y ) which 
minimizes the difference 
 

DI(Y;YN) = I(X;Y ) - I(X;YN)                 (1) 
 
Following examples from rate distortion theory, this 
problem of optimal quantization can then be 
formulated as a maximum entropy problem. The 
reason is that, among all quantizers that satisfy a 
given set of constraints, the maximum entropy 
quantizer does not implicitly introduce additional 
constraints in the problem. Within this framework, 
the minimum distortion problem is posed as a 
maximum quantization entropy problem with an 
appropriate information-theoretic distortion 
constraint. Complete details are presented in Dimitrov 
et al. (in press). The optimal quantizer q(yN|y) induces 
a coding scheme from which is the most informative 
approximation of the original relation p(x|y) for a 
fixed size N of the reproduction YN. Increasing N 
produces a refinement of the approximation, which is 
more informative (has lower distortion and thus 
preserves more of the original mutual information 
I(X;Y)). The elements of YN can be interpreted as the 
labels of the equivalence classes which we want to 
find. The quantizer q(yN|y) gives the probability of a 
response y belonging to an equivalence class yN. 
Through this approach, we recover an almost 
complete reproduction of the coding scheme as a 
relation between stimulus-response equivalence 
classes. For each neuron, the characteristic stimulus 
features are represented as the mean voltage 
waveforms of the stimulus that drove the air currents 
immediately preceding the elicited spike pattern code 
words, and the response code words are represented 
as the actual spike patterns that corresponded to those 
stimulus features. 
 
 
3.3 Refinement of the stimulus set. 
 
In previous studies, the encoding properties of nerve 
cells were studied using single-axis sinusoidal and 
band-passed gaussian noise stimuli. Here we 
characterized the INs responses to more complex 
stimuli, constructed to be more representative of the 
system’s natural stimulus set. During each 
experiment, the sensory stimulus ensemble presented 
to the animal was modified to contain a richer set of 
relevant features, as those features were discovered 
through on-line analysis of the accumulating 
stimulus/response data.  

     



During the course of the physiological recording, the 
system was stimulated initially with air currents 
drawn from a band-limited (5-500Hz) Gaussian white 
noise (GWN) source (Theunissen et al., 1996). This 
broad, non-specific stimulus allowed us to explore a 
large portion of the input space, and provided 
sufficient stimulation for a coarse model (i.e., a low-
dimensional quantization) of the system. This coarse 
analysis yielded the preliminary set of response-
conditioned mean stimuli leading up to the most 
frequently observed neural spike-pattern code words 
(e.g., single spikes, short-interval spike doublets and 
triplets.)  
 
After the initial model was in place, we modified the 
stimulus set in two ways. First, we added samples of 
the response-conditioned stimulus classes derived 
from the coarse analysis into the GWN stimulus 
waveforms, to increase the frequency of occurrence 
of the neural responses for that stimulus class. This 
allowed us to sample this part of stimulus space more 
finely, and refine the stimulus-response model, thus 
lowering the distortion and increasing the 
informativeness of the reproduction.  
 
Second, we modified the variability of the stimuli 
along certain stimulus dimensions. Since most of the 
GMMs project parts of the stimulus to a smaller 
space, reducing the variability in the discarded 
subspace does not significantly affect the model. 
Modifying the variability in the retained subspace 
does, however, modify the properties of the model. In 
this case, we modified it in a way that provided a 
tighter bound in the subsequent analysis, which 
indicated that we had built a better model. We also 
modified the variability in directions orthogonal to 
the ones already presented. The intent of this step was 

analogous to the initial GWN stimulation: to present 
parts of stimulus space which the sensory system had 
not yet perceived. 
 
This refinement procedure was repeated, and the 
stimulus ensemble was thus iteratively refined from 
non-specific stimuli to the specific subset of stimuli 
which elicited a selection of the quantized response 
classes, which in turn enabled further refinement of 
the quantizer itself. The method produced a more 
refined dictionary of equivalence classes. In principle, 
this approach can be continued until the stimulus 
space is explored in sufficient detail that further 
refinements of the stimulus do not produce 
refinements of the response model. 
 
 
 

4. RESULTS 
 

This analytical approach was used to characterize the 
encoding characteristics of single identified sensory 
interneurons in the cricket cercal system. The specific 
goal of the experiments and analyses were to discover 
(jointly) a) the dynamic stimulus waveform features 
encoded by the cells, and b) the spike train codeword 
patterns that encoded those features. In figure 1, the 
stimulus features are represented as the mean voltage 
waveforms of the stimuli that drove the air currents 
immediately preceding the elicited spike pattern code 
words, and the response code words are represented 
as the actual spike patterns that corresponded to those 
stimulus features. We use a representation of spike 
patterns that is similar to a peristimulus time 
histogram. We call this representation a class 
conditioned time histogram (CCTH.)  

 

 
Fig. 1. A quantization with 4 classes. Top panel: the four class-conditioned mean stimulus waveforms. Bottom right 

panel: the CCTH of a spike at time T given the pattern in a certain class. Lower center panel: relative proportion 
of spike patterns belonging to the different classes, as GMM priors. Lower left panel: estimate of the lower 
bound to the mutual information (gray dashed curve) and the absolute upper bound for the same level of 
quantization (dark solid curve, log2). 

     



 
For this cell, the stimulus-response space was 
quantized into four classes (i.e., N=4). The top panel 
shows four class-conditioned mean stimulus 
waveforms, corresponding to the four spike pattern 
code words derived through this successive 
quantization and stimulus refinement procedure. 
These waveforms correspond to the air-current 
velocity presented to the preparation. The 4 mean 
waveforms are each plotted in the gray scale of the 
corresponding class. The horizontal axis of this top 
plot denotes time, in ms, relative to the occurrence of 
the first spike in a class. That is, time 0 is the time at 
which the first spike on the codeword pattern 
occurred. The dashed lines denote 95% confidence 
intervals of the means, which depend on the 
reproduction size, N. 
 
The lower right panel plots the CCTH spike code 
words for these four classes. These are the classes of 
spike patterns that served as the basis for extracting 
the corresponding mean stimulus waveforms. Every 
class starts with a spike (line at 0ms). We plot the 
conditional probability of spike occurrence vs. time 
for each pattern on a logarithmic scale, with black 
indicating a probability of one for the occurrence of a 
spike, and a lighter shade of gray representing a lower 
probability. To be precise, we plot the expectation is 
Σy yip(yi|yN). The pattern yi can be considered as the 
conditional probability p(tj|yi) = p(spike occurs at 
time tj given that the observed pattern is yi). This 
probability is 1 at times when a spike occurs and zero 
otherwise. In this case, this panel can be interpreted 
as showing p(tj|yN) = Σyp(tj|yi)p(yi|yN) - the conditional 
probability of a spike at time ti given class yN. The 
similarity to a PSTH is that we present the 
distribution of spikes in time, conditioned on the 
occurrence of an event. For the PSTH, the event is a 
particular stimulus. For this representation, the event 
is a certain response class, hence the name CCTH. 
These patterns are aligned in time with the mean 
stimulus waveforms that elicited them, in the panel 
directly above. That is, the significant portions of the 
stimulus patterns that correspond to the observed 
spike patterns occur during the 20 ms preceding the 
spike code words.  
 
The lower center panel to the left of these CCTH 
plots show the relative proportion of spike patterns 
belonging to the different classes, as GMM priors 
(weights). These bars are gray-scale-coded to indicate 
the class-conditioned mean stimulus waveform to 
which the spike pattern to the right corresponds. This 
particular quantization grouped the spike patterns 
roughly according to interspike intervals: the top class 
consisted mostly of doublets with a second spike 7-10 
ms after the initial spike (dark gray range to the 
right), and a few triplets (light gray bars in front), for 
which the third spike is in the same range. The 
bottom (black) class consists mostly of short doublets, 
with a second spike 2.5-3.3 ms after the first spike, 
and a range of triplets with a third spike 6-10ms after 
the first spike.  
 

The lower left panel shows the estimate of the lower 
bound to the mutual information (gray dashed curve) 
and the absolute upper bound for the same level of 
quantization (dark solid curve, log2 N). The error bars 
mark the uncertainty of the estimate, which depend 
on the reproduction size. The estimate for the 4-class 
quantization shown here is denoted with a dark 
plotted point on the mutual information curve at N=4. 
 
For this cell, application of the iterative stimulus-
refinement approach yielded a set of stimulus 
waveforms that differed significantly from the set 
obtained when the stimulus regime was limited to 
Gaussian white noise. Specifically, several of the 
characteristic stimulus features included multiple 
cycles of sinusoidal-like oscillations.   
 
 

5. CONCLUSIONS 

 
This analytical approach offered several significant 
advantages to our characterization of the neural 
encoding scheme for this cell than previous 
approaches. First, the approach enabled a more rapid 
convergence toward a more accurate and meaningful 
representation of stimulus–response equivalence 
classes than did our previous approach. A major 
reason for this is that the stimulus regime we crafted 
through the iterative process had a much higher 
content of waveform segments containing maintained, 
multiple cycles of sine waves than do Gaussian white 
noise signals. Such multi-cycle segments are rare 
occurrences in GWN, and use of GWN to achieve the 
same level of confidence had required much longer 
experimental recording sessions. In some other 
neurons we have studied, preliminary evidence 
suggests that  GWN signals contain such a small 
fraction of “relevant” stimulus features that a 
conventional system identification approach would 
never be practical, given realistic experimental 
constraints.  
 
The neurobiological results themselves are 
enlightening, in that the approach demonstrates that 
non-linear encoding schemes are being used to 
represent information. In the case shown in Fig. 1, 
spike multiplets carry a quantity of information about 
characteristic stimulus features that is greater than the 
amount that could be extracted by a mean-rate 
decoder operating on the same stimulus waveforms. 
 
An electronic system to enable execution of this 
iterative stimulus refinement and quantization 
analysis in real-time is currently being developed. 
This test-bed will enable real-time decoding of 
ensemble neural activity patterns and real-time 
interactive modulation of those neural activity 
patterns. The hardware devices supporting these tasks 
are being developed with advanced Digital Signal 
Processing and Field Programmable Gate Array 
technologies. 
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